ai_old/goja/ftoa/internal/fast/dtoa.go

643 lines
25 KiB
Go
Raw Permalink Normal View History

2024-09-20 16:50:35 +08:00
package fast
import (
"fmt"
"strconv"
)
const (
kMinimalTargetExponent = -60
kMaximalTargetExponent = -32
kTen4 = 10000
kTen5 = 100000
kTen6 = 1000000
kTen7 = 10000000
kTen8 = 100000000
kTen9 = 1000000000
)
type Mode int
const (
ModeShortest Mode = iota
ModePrecision
)
// Adjusts the last digit of the generated number, and screens out generated
// solutions that may be inaccurate. A solution may be inaccurate if it is
// outside the safe interval, or if we cannot prove that it is closer to the
// input than a neighboring representation of the same length.
//
// Input: * buffer containing the digits of too_high / 10^kappa
// - distance_too_high_w == (too_high - w).f() * unit
// - unsafe_interval == (too_high - too_low).f() * unit
// - rest = (too_high - buffer * 10^kappa).f() * unit
// - ten_kappa = 10^kappa * unit
// - unit = the common multiplier
//
// Output: returns true if the buffer is guaranteed to contain the closest
//
// representable number to the input.
// Modifies the generated digits in the buffer to approach (round towards) w.
func roundWeed(buffer []byte, distance_too_high_w, unsafe_interval, rest, ten_kappa, unit uint64) bool {
small_distance := distance_too_high_w - unit
big_distance := distance_too_high_w + unit
// Let w_low = too_high - big_distance, and
// w_high = too_high - small_distance.
// Note: w_low < w < w_high
//
// The real w (* unit) must lie somewhere inside the interval
// ]w_low; w_high[ (often written as "(w_low; w_high)")
// Basically the buffer currently contains a number in the unsafe interval
// ]too_low; too_high[ with too_low < w < too_high
//
// too_high - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
// ^v 1 unit ^ ^ ^ ^
// boundary_high --------------------- . . . .
// ^v 1 unit . . . .
// - - - - - - - - - - - - - - - - - - - + - - + - - - - - - . .
// . . ^ . .
// . big_distance . . .
// . . . . rest
// small_distance . . . .
// v . . . .
// w_high - - - - - - - - - - - - - - - - - - . . . .
// ^v 1 unit . . . .
// w ---------------------------------------- . . . .
// ^v 1 unit v . . .
// w_low - - - - - - - - - - - - - - - - - - - - - . . .
// . . v
// buffer --------------------------------------------------+-------+--------
// . .
// safe_interval .
// v .
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - .
// ^v 1 unit .
// boundary_low ------------------------- unsafe_interval
// ^v 1 unit v
// too_low - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
//
//
// Note that the value of buffer could lie anywhere inside the range too_low
// to too_high.
//
// boundary_low, boundary_high and w are approximations of the real boundaries
// and v (the input number). They are guaranteed to be precise up to one unit.
// In fact the error is guaranteed to be strictly less than one unit.
//
// Anything that lies outside the unsafe interval is guaranteed not to round
// to v when read again.
// Anything that lies inside the safe interval is guaranteed to round to v
// when read again.
// If the number inside the buffer lies inside the unsafe interval but not
// inside the safe interval then we simply do not know and bail out (returning
// false).
//
// Similarly we have to take into account the imprecision of 'w' when finding
// the closest representation of 'w'. If we have two potential
// representations, and one is closer to both w_low and w_high, then we know
// it is closer to the actual value v.
//
// By generating the digits of too_high we got the largest (closest to
// too_high) buffer that is still in the unsafe interval. In the case where
// w_high < buffer < too_high we try to decrement the buffer.
// This way the buffer approaches (rounds towards) w.
// There are 3 conditions that stop the decrementation process:
// 1) the buffer is already below w_high
// 2) decrementing the buffer would make it leave the unsafe interval
// 3) decrementing the buffer would yield a number below w_high and farther
// away than the current number. In other words:
// (buffer{-1} < w_high) && w_high - buffer{-1} > buffer - w_high
// Instead of using the buffer directly we use its distance to too_high.
// Conceptually rest ~= too_high - buffer
// We need to do the following tests in this order to avoid over- and
// underflows.
_DCHECK(rest <= unsafe_interval)
for rest < small_distance && // Negated condition 1
unsafe_interval-rest >= ten_kappa && // Negated condition 2
(rest+ten_kappa < small_distance || // buffer{-1} > w_high
small_distance-rest >= rest+ten_kappa-small_distance) {
buffer[len(buffer)-1]--
rest += ten_kappa
}
// We have approached w+ as much as possible. We now test if approaching w-
// would require changing the buffer. If yes, then we have two possible
// representations close to w, but we cannot decide which one is closer.
if rest < big_distance && unsafe_interval-rest >= ten_kappa &&
(rest+ten_kappa < big_distance ||
big_distance-rest > rest+ten_kappa-big_distance) {
return false
}
// Weeding test.
// The safe interval is [too_low + 2 ulp; too_high - 2 ulp]
// Since too_low = too_high - unsafe_interval this is equivalent to
// [too_high - unsafe_interval + 4 ulp; too_high - 2 ulp]
// Conceptually we have: rest ~= too_high - buffer
return (2*unit <= rest) && (rest <= unsafe_interval-4*unit)
}
// Rounds the buffer upwards if the result is closer to v by possibly adding
// 1 to the buffer. If the precision of the calculation is not sufficient to
// round correctly, return false.
// The rounding might shift the whole buffer in which case the kappa is
// adjusted. For example "99", kappa = 3 might become "10", kappa = 4.
//
// If 2*rest > ten_kappa then the buffer needs to be round up.
// rest can have an error of +/- 1 unit. This function accounts for the
// imprecision and returns false, if the rounding direction cannot be
// unambiguously determined.
//
// Precondition: rest < ten_kappa.
func roundWeedCounted(buffer []byte, rest, ten_kappa, unit uint64, kappa *int) bool {
_DCHECK(rest < ten_kappa)
// The following tests are done in a specific order to avoid overflows. They
// will work correctly with any uint64 values of rest < ten_kappa and unit.
//
// If the unit is too big, then we don't know which way to round. For example
// a unit of 50 means that the real number lies within rest +/- 50. If
// 10^kappa == 40 then there is no way to tell which way to round.
if unit >= ten_kappa {
return false
}
// Even if unit is just half the size of 10^kappa we are already completely
// lost. (And after the previous test we know that the expression will not
// over/underflow.)
if ten_kappa-unit <= unit {
return false
}
// If 2 * (rest + unit) <= 10^kappa we can safely round down.
if (ten_kappa-rest > rest) && (ten_kappa-2*rest >= 2*unit) {
return true
}
// If 2 * (rest - unit) >= 10^kappa, then we can safely round up.
if (rest > unit) && (ten_kappa-(rest-unit) <= (rest - unit)) {
// Increment the last digit recursively until we find a non '9' digit.
buffer[len(buffer)-1]++
for i := len(buffer) - 1; i > 0; i-- {
if buffer[i] != '0'+10 {
break
}
buffer[i] = '0'
buffer[i-1]++
}
// If the first digit is now '0'+ 10 we had a buffer with all '9's. With the
// exception of the first digit all digits are now '0'. Simply switch the
// first digit to '1' and adjust the kappa. Example: "99" becomes "10" and
// the power (the kappa) is increased.
if buffer[0] == '0'+10 {
buffer[0] = '1'
*kappa += 1
}
return true
}
return false
}
// Returns the biggest power of ten that is less than or equal than the given
// number. We furthermore receive the maximum number of bits 'number' has.
// If number_bits == 0 then 0^-1 is returned
// The number of bits must be <= 32.
// Precondition: number < (1 << (number_bits + 1)).
func biggestPowerTen(number uint32, number_bits int) (power uint32, exponent int) {
switch number_bits {
case 32, 31, 30:
if kTen9 <= number {
power = kTen9
exponent = 9
break
}
fallthrough
case 29, 28, 27:
if kTen8 <= number {
power = kTen8
exponent = 8
break
}
fallthrough
case 26, 25, 24:
if kTen7 <= number {
power = kTen7
exponent = 7
break
}
fallthrough
case 23, 22, 21, 20:
if kTen6 <= number {
power = kTen6
exponent = 6
break
}
fallthrough
case 19, 18, 17:
if kTen5 <= number {
power = kTen5
exponent = 5
break
}
fallthrough
case 16, 15, 14:
if kTen4 <= number {
power = kTen4
exponent = 4
break
}
fallthrough
case 13, 12, 11, 10:
if 1000 <= number {
power = 1000
exponent = 3
break
}
fallthrough
case 9, 8, 7:
if 100 <= number {
power = 100
exponent = 2
break
}
fallthrough
case 6, 5, 4:
if 10 <= number {
power = 10
exponent = 1
break
}
fallthrough
case 3, 2, 1:
if 1 <= number {
power = 1
exponent = 0
break
}
fallthrough
case 0:
power = 0
exponent = -1
}
return
}
// Generates the digits of input number w.
// w is a floating-point number (DiyFp), consisting of a significand and an
// exponent. Its exponent is bounded by kMinimalTargetExponent and
// kMaximalTargetExponent.
//
// Hence -60 <= w.e() <= -32.
//
// Returns false if it fails, in which case the generated digits in the buffer
// should not be used.
// Preconditions:
// - low, w and high are correct up to 1 ulp (unit in the last place). That
// is, their error must be less than a unit of their last digits.
// - low.e() == w.e() == high.e()
// - low < w < high, and taking into account their error: low~ <= high~
// - kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent
//
// Postconditions: returns false if procedure fails.
//
// otherwise:
// * buffer is not null-terminated, but len contains the number of digits.
// * buffer contains the shortest possible decimal digit-sequence
// such that LOW < buffer * 10^kappa < HIGH, where LOW and HIGH are the
// correct values of low and high (without their error).
// * if more than one decimal representation gives the minimal number of
// decimal digits then the one closest to W (where W is the correct value
// of w) is chosen.
//
// Remark: this procedure takes into account the imprecision of its input
//
// numbers. If the precision is not enough to guarantee all the postconditions
// then false is returned. This usually happens rarely (~0.5%).
//
// Say, for the sake of example, that
//
// w.e() == -48, and w.f() == 0x1234567890ABCDEF
//
// w's value can be computed by w.f() * 2^w.e()
// We can obtain w's integral digits by simply shifting w.f() by -w.e().
//
// -> w's integral part is 0x1234
// w's fractional part is therefore 0x567890ABCDEF.
//
// Printing w's integral part is easy (simply print 0x1234 in decimal).
// In order to print its fraction we repeatedly multiply the fraction by 10 and
// get each digit. Example the first digit after the point would be computed by
//
// (0x567890ABCDEF * 10) >> 48. -> 3
//
// The whole thing becomes slightly more complicated because we want to stop
// once we have enough digits. That is, once the digits inside the buffer
// represent 'w' we can stop. Everything inside the interval low - high
// represents w. However we have to pay attention to low, high and w's
// imprecision.
func digitGen(low, w, high diyfp, buffer []byte) (kappa int, buf []byte, res bool) {
_DCHECK(low.e == w.e && w.e == high.e)
_DCHECK(low.f+1 <= high.f-1)
_DCHECK(kMinimalTargetExponent <= w.e && w.e <= kMaximalTargetExponent)
// low, w and high are imprecise, but by less than one ulp (unit in the last
// place).
// If we remove (resp. add) 1 ulp from low (resp. high) we are certain that
// the new numbers are outside of the interval we want the final
// representation to lie in.
// Inversely adding (resp. removing) 1 ulp from low (resp. high) would yield
// numbers that are certain to lie in the interval. We will use this fact
// later on.
// We will now start by generating the digits within the uncertain
// interval. Later we will weed out representations that lie outside the safe
// interval and thus _might_ lie outside the correct interval.
unit := uint64(1)
too_low := diyfp{f: low.f - unit, e: low.e}
too_high := diyfp{f: high.f + unit, e: high.e}
// too_low and too_high are guaranteed to lie outside the interval we want the
// generated number in.
unsafe_interval := too_high.minus(too_low)
// We now cut the input number into two parts: the integral digits and the
// fractionals. We will not write any decimal separator though, but adapt
// kappa instead.
// Reminder: we are currently computing the digits (stored inside the buffer)
// such that: too_low < buffer * 10^kappa < too_high
// We use too_high for the digit_generation and stop as soon as possible.
// If we stop early we effectively round down.
one := diyfp{f: 1 << -w.e, e: w.e}
// Division by one is a shift.
integrals := uint32(too_high.f >> -one.e)
// Modulo by one is an and.
fractionals := too_high.f & (one.f - 1)
divisor, divisor_exponent := biggestPowerTen(integrals, diyFpKSignificandSize-(-one.e))
kappa = divisor_exponent + 1
buf = buffer
for kappa > 0 {
digit := int(integrals / divisor)
buf = append(buf, byte('0'+digit))
integrals %= divisor
kappa--
// Note that kappa now equals the exponent of the divisor and that the
// invariant thus holds again.
rest := uint64(integrals)<<-one.e + fractionals
// Invariant: too_high = buffer * 10^kappa + DiyFp(rest, one.e)
// Reminder: unsafe_interval.e == one.e
if rest < unsafe_interval.f {
// Rounding down (by not emitting the remaining digits) yields a number
// that lies within the unsafe interval.
res = roundWeed(buf, too_high.minus(w).f,
unsafe_interval.f, rest,
uint64(divisor)<<-one.e, unit)
return
}
divisor /= 10
}
// The integrals have been generated. We are at the point of the decimal
// separator. In the following loop we simply multiply the remaining digits by
// 10 and divide by one. We just need to pay attention to multiply associated
// data (like the interval or 'unit'), too.
// Note that the multiplication by 10 does not overflow, because w.e >= -60
// and thus one.e >= -60.
_DCHECK(one.e >= -60)
_DCHECK(fractionals < one.f)
_DCHECK(0xFFFFFFFFFFFFFFFF/10 >= one.f)
for {
fractionals *= 10
unit *= 10
unsafe_interval.f *= 10
// Integer division by one.
digit := byte(fractionals >> -one.e)
buf = append(buf, '0'+digit)
fractionals &= one.f - 1 // Modulo by one.
kappa--
if fractionals < unsafe_interval.f {
res = roundWeed(buf, too_high.minus(w).f*unit, unsafe_interval.f, fractionals, one.f, unit)
return
}
}
}
// Generates (at most) requested_digits of input number w.
// w is a floating-point number (DiyFp), consisting of a significand and an
// exponent. Its exponent is bounded by kMinimalTargetExponent and
// kMaximalTargetExponent.
//
// Hence -60 <= w.e() <= -32.
//
// Returns false if it fails, in which case the generated digits in the buffer
// should not be used.
// Preconditions:
// - w is correct up to 1 ulp (unit in the last place). That
// is, its error must be strictly less than a unit of its last digit.
// - kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent
//
// Postconditions: returns false if procedure fails.
//
// otherwise:
// * buffer is not null-terminated, but length contains the number of
// digits.
// * the representation in buffer is the most precise representation of
// requested_digits digits.
// * buffer contains at most requested_digits digits of w. If there are less
// than requested_digits digits then some trailing '0's have been removed.
// * kappa is such that
// w = buffer * 10^kappa + eps with |eps| < 10^kappa / 2.
//
// Remark: This procedure takes into account the imprecision of its input
//
// numbers. If the precision is not enough to guarantee all the postconditions
// then false is returned. This usually happens rarely, but the failure-rate
// increases with higher requested_digits.
func digitGenCounted(w diyfp, requested_digits int, buffer []byte) (kappa int, buf []byte, res bool) {
_DCHECK(kMinimalTargetExponent <= w.e && w.e <= kMaximalTargetExponent)
// w is assumed to have an error less than 1 unit. Whenever w is scaled we
// also scale its error.
w_error := uint64(1)
// We cut the input number into two parts: the integral digits and the
// fractional digits. We don't emit any decimal separator, but adapt kappa
// instead. Example: instead of writing "1.2" we put "12" into the buffer and
// increase kappa by 1.
one := diyfp{f: 1 << -w.e, e: w.e}
// Division by one is a shift.
integrals := uint32(w.f >> -one.e)
// Modulo by one is an and.
fractionals := w.f & (one.f - 1)
divisor, divisor_exponent := biggestPowerTen(integrals, diyFpKSignificandSize-(-one.e))
kappa = divisor_exponent + 1
buf = buffer
// Loop invariant: buffer = w / 10^kappa (integer division)
// The invariant holds for the first iteration: kappa has been initialized
// with the divisor exponent + 1. And the divisor is the biggest power of ten
// that is smaller than 'integrals'.
for kappa > 0 {
digit := byte(integrals / divisor)
buf = append(buf, '0'+digit)
requested_digits--
integrals %= divisor
kappa--
// Note that kappa now equals the exponent of the divisor and that the
// invariant thus holds again.
if requested_digits == 0 {
break
}
divisor /= 10
}
if requested_digits == 0 {
rest := uint64(integrals)<<-one.e + fractionals
res = roundWeedCounted(buf, rest, uint64(divisor)<<-one.e, w_error, &kappa)
return
}
// The integrals have been generated. We are at the point of the decimal
// separator. In the following loop we simply multiply the remaining digits by
// 10 and divide by one. We just need to pay attention to multiply associated
// data (the 'unit'), too.
// Note that the multiplication by 10 does not overflow, because w.e >= -60
// and thus one.e >= -60.
_DCHECK(one.e >= -60)
_DCHECK(fractionals < one.f)
_DCHECK(0xFFFFFFFFFFFFFFFF/10 >= one.f)
for requested_digits > 0 && fractionals > w_error {
fractionals *= 10
w_error *= 10
// Integer division by one.
digit := byte(fractionals >> -one.e)
buf = append(buf, '0'+digit)
requested_digits--
fractionals &= one.f - 1 // Modulo by one.
kappa--
}
if requested_digits != 0 {
res = false
} else {
res = roundWeedCounted(buf, fractionals, one.f, w_error, &kappa)
}
return
}
// Provides a decimal representation of v.
// Returns true if it succeeds, otherwise the result cannot be trusted.
// There will be *length digits inside the buffer (not null-terminated).
// If the function returns true then
//
// v == (double) (buffer * 10^decimal_exponent).
//
// The digits in the buffer are the shortest representation possible: no
// 0.09999999999999999 instead of 0.1. The shorter representation will even be
// chosen even if the longer one would be closer to v.
// The last digit will be closest to the actual v. That is, even if several
// digits might correctly yield 'v' when read again, the closest will be
// computed.
func grisu3(f float64, buffer []byte) (digits []byte, decimal_exponent int, result bool) {
v := double(f)
w := v.toNormalizedDiyfp()
// boundary_minus and boundary_plus are the boundaries between v and its
// closest floating-point neighbors. Any number strictly between
// boundary_minus and boundary_plus will round to v when convert to a double.
// Grisu3 will never output representations that lie exactly on a boundary.
boundary_minus, boundary_plus := v.normalizedBoundaries()
ten_mk_minimal_binary_exponent := kMinimalTargetExponent - (w.e + diyFpKSignificandSize)
ten_mk_maximal_binary_exponent := kMaximalTargetExponent - (w.e + diyFpKSignificandSize)
ten_mk, mk := getCachedPowerForBinaryExponentRange(ten_mk_minimal_binary_exponent, ten_mk_maximal_binary_exponent)
_DCHECK(
(kMinimalTargetExponent <=
w.e+ten_mk.e+diyFpKSignificandSize) &&
(kMaximalTargetExponent >= w.e+ten_mk.e+diyFpKSignificandSize))
// Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a
// 64 bit significand and ten_mk is thus only precise up to 64 bits.
// The DiyFp::Times procedure rounds its result, and ten_mk is approximated
// too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now
// off by a small amount.
// In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w.
// In other words: let f = scaled_w.f() and e = scaled_w.e(), then
// (f-1) * 2^e < w*10^k < (f+1) * 2^e
scaled_w := w.times(ten_mk)
_DCHECK(scaled_w.e ==
boundary_plus.e+ten_mk.e+diyFpKSignificandSize)
// In theory it would be possible to avoid some recomputations by computing
// the difference between w and boundary_minus/plus (a power of 2) and to
// compute scaled_boundary_minus/plus by subtracting/adding from
// scaled_w. However the code becomes much less readable and the speed
// enhancements are not terrific.
scaled_boundary_minus := boundary_minus.times(ten_mk)
scaled_boundary_plus := boundary_plus.times(ten_mk)
// DigitGen will generate the digits of scaled_w. Therefore we have
// v == (double) (scaled_w * 10^-mk).
// Set decimal_exponent == -mk and pass it to DigitGen. If scaled_w is not an
// integer than it will be updated. For instance if scaled_w == 1.23 then
// the buffer will be filled with "123" und the decimal_exponent will be
// decreased by 2.
var kappa int
kappa, digits, result = digitGen(scaled_boundary_minus, scaled_w, scaled_boundary_plus, buffer)
decimal_exponent = -mk + kappa
return
}
// The "counted" version of grisu3 (see above) only generates requested_digits
// number of digits. This version does not generate the shortest representation,
// and with enough requested digits 0.1 will at some point print as 0.9999999...
// Grisu3 is too imprecise for real halfway cases (1.5 will not work) and
// therefore the rounding strategy for halfway cases is irrelevant.
func grisu3Counted(v float64, requested_digits int, buffer []byte) (digits []byte, decimal_exponent int, result bool) {
w := double(v).toNormalizedDiyfp()
ten_mk_minimal_binary_exponent := kMinimalTargetExponent - (w.e + diyFpKSignificandSize)
ten_mk_maximal_binary_exponent := kMaximalTargetExponent - (w.e + diyFpKSignificandSize)
ten_mk, mk := getCachedPowerForBinaryExponentRange(ten_mk_minimal_binary_exponent, ten_mk_maximal_binary_exponent)
_DCHECK(
(kMinimalTargetExponent <=
w.e+ten_mk.e+diyFpKSignificandSize) &&
(kMaximalTargetExponent >= w.e+ten_mk.e+diyFpKSignificandSize))
// Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a
// 64 bit significand and ten_mk is thus only precise up to 64 bits.
// The DiyFp::Times procedure rounds its result, and ten_mk is approximated
// too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now
// off by a small amount.
// In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w.
// In other words: let f = scaled_w.f() and e = scaled_w.e(), then
// (f-1) * 2^e < w*10^k < (f+1) * 2^e
scaled_w := w.times(ten_mk)
// We now have (double) (scaled_w * 10^-mk).
// DigitGen will generate the first requested_digits digits of scaled_w and
// return together with a kappa such that scaled_w ~= buffer * 10^kappa. (It
// will not always be exactly the same since DigitGenCounted only produces a
// limited number of digits.)
var kappa int
kappa, digits, result = digitGenCounted(scaled_w, requested_digits, buffer)
decimal_exponent = -mk + kappa
return
}
// v must be > 0 and must not be Inf or NaN
func Dtoa(v float64, mode Mode, requested_digits int, buffer []byte) (digits []byte, decimal_point int, result bool) {
defer func() {
if x := recover(); x != nil {
if x == dcheckFailure {
panic(fmt.Errorf("DCHECK assertion failed while formatting %s in mode %d", strconv.FormatFloat(v, 'e', 50, 64), mode))
}
panic(x)
}
}()
var decimal_exponent int
startPos := len(buffer)
switch mode {
case ModeShortest:
digits, decimal_exponent, result = grisu3(v, buffer)
case ModePrecision:
digits, decimal_exponent, result = grisu3Counted(v, requested_digits, buffer)
}
if result {
decimal_point = len(digits) - startPos + decimal_exponent
} else {
digits = digits[:startPos]
}
return
}