154 lines
3.5 KiB
Go
154 lines
3.5 KiB
Go
|
package ftoa
|
||
|
|
||
|
import (
|
||
|
"fmt"
|
||
|
"math"
|
||
|
"math/big"
|
||
|
"strconv"
|
||
|
"strings"
|
||
|
)
|
||
|
|
||
|
const (
|
||
|
digits = "0123456789abcdefghijklmnopqrstuvwxyz"
|
||
|
)
|
||
|
|
||
|
func FToBaseStr(num float64, radix int) string {
|
||
|
var negative bool
|
||
|
if num < 0 {
|
||
|
num = -num
|
||
|
negative = true
|
||
|
}
|
||
|
|
||
|
dfloor := math.Floor(num)
|
||
|
ldfloor := int64(dfloor)
|
||
|
var intDigits string
|
||
|
if dfloor == float64(ldfloor) {
|
||
|
if negative {
|
||
|
ldfloor = -ldfloor
|
||
|
}
|
||
|
intDigits = strconv.FormatInt(ldfloor, radix)
|
||
|
} else {
|
||
|
floorBits := math.Float64bits(num)
|
||
|
exp := int(floorBits>>exp_shiftL) & exp_mask_shifted
|
||
|
var mantissa int64
|
||
|
if exp == 0 {
|
||
|
mantissa = int64((floorBits & frac_maskL) << 1)
|
||
|
} else {
|
||
|
mantissa = int64((floorBits & frac_maskL) | exp_msk1L)
|
||
|
}
|
||
|
|
||
|
if negative {
|
||
|
mantissa = -mantissa
|
||
|
}
|
||
|
exp -= 1075
|
||
|
x := big.NewInt(mantissa)
|
||
|
if exp > 0 {
|
||
|
x.Lsh(x, uint(exp))
|
||
|
} else if exp < 0 {
|
||
|
x.Rsh(x, uint(-exp))
|
||
|
}
|
||
|
intDigits = x.Text(radix)
|
||
|
}
|
||
|
|
||
|
if num == dfloor {
|
||
|
// No fraction part
|
||
|
return intDigits
|
||
|
} else {
|
||
|
/* We have a fraction. */
|
||
|
var buffer strings.Builder
|
||
|
buffer.WriteString(intDigits)
|
||
|
buffer.WriteByte('.')
|
||
|
df := num - dfloor
|
||
|
|
||
|
dBits := math.Float64bits(num)
|
||
|
word0 := uint32(dBits >> 32)
|
||
|
word1 := uint32(dBits)
|
||
|
|
||
|
dblBits := make([]byte, 0, 8)
|
||
|
e, _, dblBits := d2b(df, dblBits)
|
||
|
// JS_ASSERT(e < 0);
|
||
|
/* At this point df = b * 2^e. e must be less than zero because 0 < df < 1. */
|
||
|
|
||
|
s2 := -int((word0 >> exp_shift1) & (exp_mask >> exp_shift1))
|
||
|
if s2 == 0 {
|
||
|
s2 = -1
|
||
|
}
|
||
|
s2 += bias + p
|
||
|
/* 1/2^s2 = (nextDouble(d) - d)/2 */
|
||
|
// JS_ASSERT(-s2 < e);
|
||
|
if -s2 >= e {
|
||
|
panic(fmt.Errorf("-s2 >= e: %d, %d", -s2, e))
|
||
|
}
|
||
|
mlo := big.NewInt(1)
|
||
|
mhi := mlo
|
||
|
if (word1 == 0) && ((word0 & bndry_mask) == 0) && ((word0 & (exp_mask & (exp_mask << 1))) != 0) {
|
||
|
/* The special case. Here we want to be within a quarter of the last input
|
||
|
significant digit instead of one half of it when the output string's value is less than d. */
|
||
|
s2 += log2P
|
||
|
mhi = big.NewInt(1 << log2P)
|
||
|
}
|
||
|
|
||
|
b := new(big.Int).SetBytes(dblBits)
|
||
|
b.Lsh(b, uint(e+s2))
|
||
|
s := big.NewInt(1)
|
||
|
s.Lsh(s, uint(s2))
|
||
|
/* At this point we have the following:
|
||
|
* s = 2^s2;
|
||
|
* 1 > df = b/2^s2 > 0;
|
||
|
* (d - prevDouble(d))/2 = mlo/2^s2;
|
||
|
* (nextDouble(d) - d)/2 = mhi/2^s2. */
|
||
|
bigBase := big.NewInt(int64(radix))
|
||
|
|
||
|
done := false
|
||
|
m := &big.Int{}
|
||
|
delta := &big.Int{}
|
||
|
for !done {
|
||
|
b.Mul(b, bigBase)
|
||
|
b.DivMod(b, s, m)
|
||
|
digit := byte(b.Int64())
|
||
|
b, m = m, b
|
||
|
mlo.Mul(mlo, bigBase)
|
||
|
if mlo != mhi {
|
||
|
mhi.Mul(mhi, bigBase)
|
||
|
}
|
||
|
|
||
|
/* Do we yet have the shortest string that will round to d? */
|
||
|
j := b.Cmp(mlo)
|
||
|
/* j is b/2^s2 compared with mlo/2^s2. */
|
||
|
|
||
|
delta.Sub(s, mhi)
|
||
|
var j1 int
|
||
|
if delta.Sign() <= 0 {
|
||
|
j1 = 1
|
||
|
} else {
|
||
|
j1 = b.Cmp(delta)
|
||
|
}
|
||
|
/* j1 is b/2^s2 compared with 1 - mhi/2^s2. */
|
||
|
if j1 == 0 && (word1&1) == 0 {
|
||
|
if j > 0 {
|
||
|
digit++
|
||
|
}
|
||
|
done = true
|
||
|
} else if j < 0 || (j == 0 && ((word1 & 1) == 0)) {
|
||
|
if j1 > 0 {
|
||
|
/* Either dig or dig+1 would work here as the least significant digit.
|
||
|
Use whichever would produce an output value closer to d. */
|
||
|
b.Lsh(b, 1)
|
||
|
j1 = b.Cmp(s)
|
||
|
if j1 > 0 { /* The even test (|| (j1 == 0 && (digit & 1))) is not here because it messes up odd base output such as 3.5 in base 3. */
|
||
|
digit++
|
||
|
}
|
||
|
}
|
||
|
done = true
|
||
|
} else if j1 > 0 {
|
||
|
digit++
|
||
|
done = true
|
||
|
}
|
||
|
// JS_ASSERT(digit < (uint32)base);
|
||
|
buffer.WriteByte(digits[digit])
|
||
|
}
|
||
|
|
||
|
return buffer.String()
|
||
|
}
|
||
|
}
|