ai_old/goja/ftoa/ftobasestr.go

154 lines
3.5 KiB
Go
Raw Normal View History

2024-09-20 16:50:35 +08:00
package ftoa
import (
"fmt"
"math"
"math/big"
"strconv"
"strings"
)
const (
digits = "0123456789abcdefghijklmnopqrstuvwxyz"
)
func FToBaseStr(num float64, radix int) string {
var negative bool
if num < 0 {
num = -num
negative = true
}
dfloor := math.Floor(num)
ldfloor := int64(dfloor)
var intDigits string
if dfloor == float64(ldfloor) {
if negative {
ldfloor = -ldfloor
}
intDigits = strconv.FormatInt(ldfloor, radix)
} else {
floorBits := math.Float64bits(num)
exp := int(floorBits>>exp_shiftL) & exp_mask_shifted
var mantissa int64
if exp == 0 {
mantissa = int64((floorBits & frac_maskL) << 1)
} else {
mantissa = int64((floorBits & frac_maskL) | exp_msk1L)
}
if negative {
mantissa = -mantissa
}
exp -= 1075
x := big.NewInt(mantissa)
if exp > 0 {
x.Lsh(x, uint(exp))
} else if exp < 0 {
x.Rsh(x, uint(-exp))
}
intDigits = x.Text(radix)
}
if num == dfloor {
// No fraction part
return intDigits
} else {
/* We have a fraction. */
var buffer strings.Builder
buffer.WriteString(intDigits)
buffer.WriteByte('.')
df := num - dfloor
dBits := math.Float64bits(num)
word0 := uint32(dBits >> 32)
word1 := uint32(dBits)
dblBits := make([]byte, 0, 8)
e, _, dblBits := d2b(df, dblBits)
// JS_ASSERT(e < 0);
/* At this point df = b * 2^e. e must be less than zero because 0 < df < 1. */
s2 := -int((word0 >> exp_shift1) & (exp_mask >> exp_shift1))
if s2 == 0 {
s2 = -1
}
s2 += bias + p
/* 1/2^s2 = (nextDouble(d) - d)/2 */
// JS_ASSERT(-s2 < e);
if -s2 >= e {
panic(fmt.Errorf("-s2 >= e: %d, %d", -s2, e))
}
mlo := big.NewInt(1)
mhi := mlo
if (word1 == 0) && ((word0 & bndry_mask) == 0) && ((word0 & (exp_mask & (exp_mask << 1))) != 0) {
/* The special case. Here we want to be within a quarter of the last input
significant digit instead of one half of it when the output string's value is less than d. */
s2 += log2P
mhi = big.NewInt(1 << log2P)
}
b := new(big.Int).SetBytes(dblBits)
b.Lsh(b, uint(e+s2))
s := big.NewInt(1)
s.Lsh(s, uint(s2))
/* At this point we have the following:
* s = 2^s2;
* 1 > df = b/2^s2 > 0;
* (d - prevDouble(d))/2 = mlo/2^s2;
* (nextDouble(d) - d)/2 = mhi/2^s2. */
bigBase := big.NewInt(int64(radix))
done := false
m := &big.Int{}
delta := &big.Int{}
for !done {
b.Mul(b, bigBase)
b.DivMod(b, s, m)
digit := byte(b.Int64())
b, m = m, b
mlo.Mul(mlo, bigBase)
if mlo != mhi {
mhi.Mul(mhi, bigBase)
}
/* Do we yet have the shortest string that will round to d? */
j := b.Cmp(mlo)
/* j is b/2^s2 compared with mlo/2^s2. */
delta.Sub(s, mhi)
var j1 int
if delta.Sign() <= 0 {
j1 = 1
} else {
j1 = b.Cmp(delta)
}
/* j1 is b/2^s2 compared with 1 - mhi/2^s2. */
if j1 == 0 && (word1&1) == 0 {
if j > 0 {
digit++
}
done = true
} else if j < 0 || (j == 0 && ((word1 & 1) == 0)) {
if j1 > 0 {
/* Either dig or dig+1 would work here as the least significant digit.
Use whichever would produce an output value closer to d. */
b.Lsh(b, 1)
j1 = b.Cmp(s)
if j1 > 0 { /* The even test (|| (j1 == 0 && (digit & 1))) is not here because it messes up odd base output such as 3.5 in base 3. */
digit++
}
}
done = true
} else if j1 > 0 {
digit++
done = true
}
// JS_ASSERT(digit < (uint32)base);
buffer.WriteByte(digits[digit])
}
return buffer.String()
}
}