148 lines
3.3 KiB
Go
148 lines
3.3 KiB
Go
|
package ftoa
|
||
|
|
||
|
import (
|
||
|
"math"
|
||
|
"strconv"
|
||
|
|
||
|
"github.com/dop251/goja/ftoa/internal/fast"
|
||
|
)
|
||
|
|
||
|
type FToStrMode int
|
||
|
|
||
|
const (
|
||
|
// Either fixed or exponential format; round-trip
|
||
|
ModeStandard FToStrMode = iota
|
||
|
// Always exponential format; round-trip
|
||
|
ModeStandardExponential
|
||
|
// Round to <precision> digits after the decimal point; exponential if number is large
|
||
|
ModeFixed
|
||
|
// Always exponential format; <precision> significant digits
|
||
|
ModeExponential
|
||
|
// Either fixed or exponential format; <precision> significant digits
|
||
|
ModePrecision
|
||
|
)
|
||
|
|
||
|
func insert(b []byte, p int, c byte) []byte {
|
||
|
b = append(b, 0)
|
||
|
copy(b[p+1:], b[p:])
|
||
|
b[p] = c
|
||
|
return b
|
||
|
}
|
||
|
|
||
|
func expand(b []byte, delta int) []byte {
|
||
|
newLen := len(b) + delta
|
||
|
if newLen <= cap(b) {
|
||
|
return b[:newLen]
|
||
|
}
|
||
|
b1 := make([]byte, newLen)
|
||
|
copy(b1, b)
|
||
|
return b1
|
||
|
}
|
||
|
|
||
|
func FToStr(d float64, mode FToStrMode, precision int, buffer []byte) []byte {
|
||
|
if math.IsNaN(d) {
|
||
|
buffer = append(buffer, "NaN"...)
|
||
|
return buffer
|
||
|
}
|
||
|
if math.IsInf(d, 0) {
|
||
|
if math.Signbit(d) {
|
||
|
buffer = append(buffer, '-')
|
||
|
}
|
||
|
buffer = append(buffer, "Infinity"...)
|
||
|
return buffer
|
||
|
}
|
||
|
|
||
|
if mode == ModeFixed && (d >= 1e21 || d <= -1e21) {
|
||
|
mode = ModeStandard
|
||
|
}
|
||
|
|
||
|
var decPt int
|
||
|
var ok bool
|
||
|
startPos := len(buffer)
|
||
|
|
||
|
if d != 0 { // also matches -0
|
||
|
if d < 0 {
|
||
|
buffer = append(buffer, '-')
|
||
|
d = -d
|
||
|
startPos++
|
||
|
}
|
||
|
switch mode {
|
||
|
case ModeStandard, ModeStandardExponential:
|
||
|
buffer, decPt, ok = fast.Dtoa(d, fast.ModeShortest, 0, buffer)
|
||
|
case ModeExponential, ModePrecision:
|
||
|
buffer, decPt, ok = fast.Dtoa(d, fast.ModePrecision, precision, buffer)
|
||
|
}
|
||
|
} else {
|
||
|
buffer = append(buffer, '0')
|
||
|
decPt, ok = 1, true
|
||
|
}
|
||
|
if !ok {
|
||
|
buffer, decPt = ftoa(d, dtoaModes[mode], mode >= ModeFixed, precision, buffer)
|
||
|
}
|
||
|
exponentialNotation := false
|
||
|
minNDigits := 0 /* Minimum number of significand digits required by mode and precision */
|
||
|
nDigits := len(buffer) - startPos
|
||
|
|
||
|
switch mode {
|
||
|
case ModeStandard:
|
||
|
if decPt < -5 || decPt > 21 {
|
||
|
exponentialNotation = true
|
||
|
} else {
|
||
|
minNDigits = decPt
|
||
|
}
|
||
|
case ModeFixed:
|
||
|
if precision >= 0 {
|
||
|
minNDigits = decPt + precision
|
||
|
} else {
|
||
|
minNDigits = decPt
|
||
|
}
|
||
|
case ModeExponential:
|
||
|
// JS_ASSERT(precision > 0);
|
||
|
minNDigits = precision
|
||
|
fallthrough
|
||
|
case ModeStandardExponential:
|
||
|
exponentialNotation = true
|
||
|
case ModePrecision:
|
||
|
// JS_ASSERT(precision > 0);
|
||
|
minNDigits = precision
|
||
|
if decPt < -5 || decPt > precision {
|
||
|
exponentialNotation = true
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for nDigits < minNDigits {
|
||
|
buffer = append(buffer, '0')
|
||
|
nDigits++
|
||
|
}
|
||
|
|
||
|
if exponentialNotation {
|
||
|
/* Insert a decimal point if more than one significand digit */
|
||
|
if nDigits != 1 {
|
||
|
buffer = insert(buffer, startPos+1, '.')
|
||
|
}
|
||
|
buffer = append(buffer, 'e')
|
||
|
if decPt-1 >= 0 {
|
||
|
buffer = append(buffer, '+')
|
||
|
}
|
||
|
buffer = strconv.AppendInt(buffer, int64(decPt-1), 10)
|
||
|
} else if decPt != nDigits {
|
||
|
/* Some kind of a fraction in fixed notation */
|
||
|
// JS_ASSERT(decPt <= nDigits);
|
||
|
if decPt > 0 {
|
||
|
/* dd...dd . dd...dd */
|
||
|
buffer = insert(buffer, startPos+decPt, '.')
|
||
|
} else {
|
||
|
/* 0 . 00...00dd...dd */
|
||
|
buffer = expand(buffer, 2-decPt)
|
||
|
copy(buffer[startPos+2-decPt:], buffer[startPos:])
|
||
|
buffer[startPos] = '0'
|
||
|
buffer[startPos+1] = '.'
|
||
|
for i := startPos + 2; i < startPos+2-decPt; i++ {
|
||
|
buffer[i] = '0'
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return buffer
|
||
|
}
|