package goja import ( "fmt" "math" "reflect" "sort" "apigo.cc/ai/ai/goja/unistring" ) const ( classObject = "Object" classArray = "Array" classWeakSet = "WeakSet" classWeakMap = "WeakMap" classMap = "Map" classMath = "Math" classSet = "Set" classFunction = "Function" classAsyncFunction = "AsyncFunction" classNumber = "Number" classString = "String" classBoolean = "Boolean" classError = "Error" classRegExp = "RegExp" classDate = "Date" classJSON = "JSON" classGlobal = "global" classPromise = "Promise" classArrayIterator = "Array Iterator" classMapIterator = "Map Iterator" classSetIterator = "Set Iterator" classStringIterator = "String Iterator" classRegExpStringIterator = "RegExp String Iterator" classGenerator = "Generator" classGeneratorFunction = "GeneratorFunction" ) var ( hintDefault Value = asciiString("default") hintNumber Value = asciiString("number") hintString Value = asciiString("string") ) type Object struct { id uint64 runtime *Runtime self objectImpl weakRefs map[weakMap]Value } type iterNextFunc func() (propIterItem, iterNextFunc) type PropertyDescriptor struct { jsDescriptor *Object Value Value Writable, Configurable, Enumerable Flag Getter, Setter Value } func (p *PropertyDescriptor) Empty() bool { var empty PropertyDescriptor return *p == empty } func (p *PropertyDescriptor) IsAccessor() bool { return p.Setter != nil || p.Getter != nil } func (p *PropertyDescriptor) IsData() bool { return p.Value != nil || p.Writable != FLAG_NOT_SET } func (p *PropertyDescriptor) IsGeneric() bool { return !p.IsAccessor() && !p.IsData() } func (p *PropertyDescriptor) toValue(r *Runtime) Value { if p.jsDescriptor != nil { return p.jsDescriptor } if p.Empty() { return _undefined } o := r.NewObject() s := o.self if p.Value != nil { s._putProp("value", p.Value, true, true, true) } if p.Writable != FLAG_NOT_SET { s._putProp("writable", valueBool(p.Writable.Bool()), true, true, true) } if p.Enumerable != FLAG_NOT_SET { s._putProp("enumerable", valueBool(p.Enumerable.Bool()), true, true, true) } if p.Configurable != FLAG_NOT_SET { s._putProp("configurable", valueBool(p.Configurable.Bool()), true, true, true) } if p.Getter != nil { s._putProp("get", p.Getter, true, true, true) } if p.Setter != nil { s._putProp("set", p.Setter, true, true, true) } return o } func (p *PropertyDescriptor) complete() { if p.Getter == nil && p.Setter == nil { if p.Value == nil { p.Value = _undefined } if p.Writable == FLAG_NOT_SET { p.Writable = FLAG_FALSE } } else { if p.Getter == nil { p.Getter = _undefined } if p.Setter == nil { p.Setter = _undefined } } if p.Enumerable == FLAG_NOT_SET { p.Enumerable = FLAG_FALSE } if p.Configurable == FLAG_NOT_SET { p.Configurable = FLAG_FALSE } } type objectExportCacheItem map[reflect.Type]interface{} type objectExportCtx struct { cache map[*Object]interface{} } type objectImpl interface { sortable className() string typeOf() String getStr(p unistring.String, receiver Value) Value getIdx(p valueInt, receiver Value) Value getSym(p *Symbol, receiver Value) Value getOwnPropStr(unistring.String) Value getOwnPropIdx(valueInt) Value getOwnPropSym(*Symbol) Value setOwnStr(p unistring.String, v Value, throw bool) bool setOwnIdx(p valueInt, v Value, throw bool) bool setOwnSym(p *Symbol, v Value, throw bool) bool setForeignStr(p unistring.String, v, receiver Value, throw bool) (res bool, handled bool) setForeignIdx(p valueInt, v, receiver Value, throw bool) (res bool, handled bool) setForeignSym(p *Symbol, v, receiver Value, throw bool) (res bool, handled bool) hasPropertyStr(unistring.String) bool hasPropertyIdx(idx valueInt) bool hasPropertySym(s *Symbol) bool hasOwnPropertyStr(unistring.String) bool hasOwnPropertyIdx(valueInt) bool hasOwnPropertySym(s *Symbol) bool defineOwnPropertyStr(name unistring.String, desc PropertyDescriptor, throw bool) bool defineOwnPropertyIdx(name valueInt, desc PropertyDescriptor, throw bool) bool defineOwnPropertySym(name *Symbol, desc PropertyDescriptor, throw bool) bool deleteStr(name unistring.String, throw bool) bool deleteIdx(idx valueInt, throw bool) bool deleteSym(s *Symbol, throw bool) bool assertCallable() (call func(FunctionCall) Value, ok bool) vmCall(vm *vm, n int) assertConstructor() func(args []Value, newTarget *Object) *Object proto() *Object setProto(proto *Object, throw bool) bool hasInstance(v Value) bool isExtensible() bool preventExtensions(throw bool) bool export(ctx *objectExportCtx) interface{} exportType() reflect.Type exportToMap(m reflect.Value, typ reflect.Type, ctx *objectExportCtx) error exportToArrayOrSlice(s reflect.Value, typ reflect.Type, ctx *objectExportCtx) error equal(objectImpl) bool iterateStringKeys() iterNextFunc iterateSymbols() iterNextFunc iterateKeys() iterNextFunc stringKeys(all bool, accum []Value) []Value symbols(all bool, accum []Value) []Value keys(all bool, accum []Value) []Value _putProp(name unistring.String, value Value, writable, enumerable, configurable bool) Value _putSym(s *Symbol, prop Value) getPrivateEnv(typ *privateEnvType, create bool) *privateElements } type baseObject struct { class string val *Object prototype *Object extensible bool values map[unistring.String]Value propNames []unistring.String lastSortedPropLen, idxPropCount int symValues *orderedMap privateElements map[*privateEnvType]*privateElements } type guardedObject struct { baseObject guardedProps map[unistring.String]struct{} } type primitiveValueObject struct { baseObject pValue Value } func (o *primitiveValueObject) export(*objectExportCtx) interface{} { return o.pValue.Export() } func (o *primitiveValueObject) exportType() reflect.Type { return o.pValue.ExportType() } type FunctionCall struct { This Value Arguments []Value } type ConstructorCall struct { This *Object Arguments []Value NewTarget *Object } func (f FunctionCall) Argument(idx int) Value { if idx < len(f.Arguments) { return f.Arguments[idx] } return _undefined } func (f ConstructorCall) Argument(idx int) Value { if idx < len(f.Arguments) { return f.Arguments[idx] } return _undefined } func (o *baseObject) init() { o.values = make(map[unistring.String]Value) } func (o *baseObject) className() string { return o.class } func (o *baseObject) typeOf() String { return stringObjectC } func (o *baseObject) hasPropertyStr(name unistring.String) bool { if o.val.self.hasOwnPropertyStr(name) { return true } if o.prototype != nil { return o.prototype.self.hasPropertyStr(name) } return false } func (o *baseObject) hasPropertyIdx(idx valueInt) bool { return o.val.self.hasPropertyStr(idx.string()) } func (o *baseObject) hasPropertySym(s *Symbol) bool { if o.hasOwnPropertySym(s) { return true } if o.prototype != nil { return o.prototype.self.hasPropertySym(s) } return false } func (o *baseObject) getWithOwnProp(prop, p, receiver Value) Value { if prop == nil && o.prototype != nil { if receiver == nil { return o.prototype.get(p, o.val) } return o.prototype.get(p, receiver) } if prop, ok := prop.(*valueProperty); ok { if receiver == nil { return prop.get(o.val) } return prop.get(receiver) } return prop } func (o *baseObject) getStrWithOwnProp(prop Value, name unistring.String, receiver Value) Value { if prop == nil && o.prototype != nil { if receiver == nil { return o.prototype.self.getStr(name, o.val) } return o.prototype.self.getStr(name, receiver) } if prop, ok := prop.(*valueProperty); ok { if receiver == nil { return prop.get(o.val) } return prop.get(receiver) } return prop } func (o *baseObject) getIdx(idx valueInt, receiver Value) Value { return o.val.self.getStr(idx.string(), receiver) } func (o *baseObject) getSym(s *Symbol, receiver Value) Value { return o.getWithOwnProp(o.getOwnPropSym(s), s, receiver) } func (o *baseObject) getStr(name unistring.String, receiver Value) Value { prop := o.values[name] if prop == nil { if o.prototype != nil { if receiver == nil { return o.prototype.self.getStr(name, o.val) } return o.prototype.self.getStr(name, receiver) } } if prop, ok := prop.(*valueProperty); ok { if receiver == nil { return prop.get(o.val) } return prop.get(receiver) } return prop } func (o *baseObject) getOwnPropIdx(idx valueInt) Value { return o.val.self.getOwnPropStr(idx.string()) } func (o *baseObject) getOwnPropSym(s *Symbol) Value { if o.symValues != nil { return o.symValues.get(s) } return nil } func (o *baseObject) getOwnPropStr(name unistring.String) Value { return o.values[name] } func (o *baseObject) checkDeleteProp(name unistring.String, prop *valueProperty, throw bool) bool { if !prop.configurable { if throw { r := o.val.runtime panic(r.NewTypeError("Cannot delete property '%s' of %s", name, r.objectproto_toString(FunctionCall{This: o.val}))) } return false } return true } func (o *baseObject) checkDelete(name unistring.String, val Value, throw bool) bool { if val, ok := val.(*valueProperty); ok { return o.checkDeleteProp(name, val, throw) } return true } func (o *baseObject) _delete(name unistring.String) { delete(o.values, name) for i, n := range o.propNames { if n == name { names := o.propNames if namesMarkedForCopy(names) { newNames := make([]unistring.String, len(names)-1, shrinkCap(len(names), cap(names))) copy(newNames, names[:i]) copy(newNames[i:], names[i+1:]) o.propNames = newNames } else { copy(names[i:], names[i+1:]) names[len(names)-1] = "" o.propNames = names[:len(names)-1] } if i < o.lastSortedPropLen { o.lastSortedPropLen-- if i < o.idxPropCount { o.idxPropCount-- } } break } } } func (o *baseObject) deleteIdx(idx valueInt, throw bool) bool { return o.val.self.deleteStr(idx.string(), throw) } func (o *baseObject) deleteSym(s *Symbol, throw bool) bool { if o.symValues != nil { if val := o.symValues.get(s); val != nil { if !o.checkDelete(s.descriptiveString().string(), val, throw) { return false } o.symValues.remove(s) } } return true } func (o *baseObject) deleteStr(name unistring.String, throw bool) bool { if val, exists := o.values[name]; exists { if !o.checkDelete(name, val, throw) { return false } o._delete(name) } return true } func (o *baseObject) setProto(proto *Object, throw bool) bool { current := o.prototype if current.SameAs(proto) { return true } if !o.extensible { o.val.runtime.typeErrorResult(throw, "%s is not extensible", o.val) return false } for p := proto; p != nil; p = p.self.proto() { if p.SameAs(o.val) { o.val.runtime.typeErrorResult(throw, "Cyclic __proto__ value") return false } if _, ok := p.self.(*proxyObject); ok { break } } o.prototype = proto return true } func (o *baseObject) setOwnStr(name unistring.String, val Value, throw bool) bool { ownDesc := o.values[name] if ownDesc == nil { if proto := o.prototype; proto != nil { // we know it's foreign because prototype loops are not allowed if res, handled := proto.self.setForeignStr(name, val, o.val, throw); handled { return res } } // new property if !o.extensible { o.val.runtime.typeErrorResult(throw, "Cannot add property %s, object is not extensible", name) return false } else { o.values[name] = val names := copyNamesIfNeeded(o.propNames, 1) o.propNames = append(names, name) } return true } if prop, ok := ownDesc.(*valueProperty); ok { if !prop.isWritable() { o.val.runtime.typeErrorResult(throw, "Cannot assign to read only property '%s'", name) return false } else { prop.set(o.val, val) } } else { o.values[name] = val } return true } func (o *baseObject) setOwnIdx(idx valueInt, val Value, throw bool) bool { return o.val.self.setOwnStr(idx.string(), val, throw) } func (o *baseObject) setOwnSym(name *Symbol, val Value, throw bool) bool { var ownDesc Value if o.symValues != nil { ownDesc = o.symValues.get(name) } if ownDesc == nil { if proto := o.prototype; proto != nil { // we know it's foreign because prototype loops are not allowed if res, handled := proto.self.setForeignSym(name, val, o.val, throw); handled { return res } } // new property if !o.extensible { o.val.runtime.typeErrorResult(throw, "Cannot add property %s, object is not extensible", name) return false } else { if o.symValues == nil { o.symValues = newOrderedMap(nil) } o.symValues.set(name, val) } return true } if prop, ok := ownDesc.(*valueProperty); ok { if !prop.isWritable() { o.val.runtime.typeErrorResult(throw, "Cannot assign to read only property '%s'", name) return false } else { prop.set(o.val, val) } } else { o.symValues.set(name, val) } return true } func (o *baseObject) _setForeignStr(name unistring.String, prop, val, receiver Value, throw bool) (bool, bool) { if prop != nil { if prop, ok := prop.(*valueProperty); ok { if !prop.isWritable() { o.val.runtime.typeErrorResult(throw, "Cannot assign to read only property '%s'", name) return false, true } if prop.setterFunc != nil { prop.set(receiver, val) return true, true } } } else { if proto := o.prototype; proto != nil { if receiver != proto { return proto.self.setForeignStr(name, val, receiver, throw) } return proto.self.setOwnStr(name, val, throw), true } } return false, false } func (o *baseObject) _setForeignIdx(idx valueInt, prop, val, receiver Value, throw bool) (bool, bool) { if prop != nil { if prop, ok := prop.(*valueProperty); ok { if !prop.isWritable() { o.val.runtime.typeErrorResult(throw, "Cannot assign to read only property '%d'", idx) return false, true } if prop.setterFunc != nil { prop.set(receiver, val) return true, true } } } else { if proto := o.prototype; proto != nil { if receiver != proto { return proto.self.setForeignIdx(idx, val, receiver, throw) } return proto.self.setOwnIdx(idx, val, throw), true } } return false, false } func (o *baseObject) setForeignStr(name unistring.String, val, receiver Value, throw bool) (bool, bool) { return o._setForeignStr(name, o.values[name], val, receiver, throw) } func (o *baseObject) setForeignIdx(name valueInt, val, receiver Value, throw bool) (bool, bool) { if idx := toIdx(name); idx != math.MaxUint32 { o.ensurePropOrder() if o.idxPropCount == 0 { return o._setForeignIdx(name, name, nil, receiver, throw) } } return o.setForeignStr(name.string(), val, receiver, throw) } func (o *baseObject) setForeignSym(name *Symbol, val, receiver Value, throw bool) (bool, bool) { var prop Value if o.symValues != nil { prop = o.symValues.get(name) } if prop != nil { if prop, ok := prop.(*valueProperty); ok { if !prop.isWritable() { o.val.runtime.typeErrorResult(throw, "Cannot assign to read only property '%s'", name) return false, true } if prop.setterFunc != nil { prop.set(receiver, val) return true, true } } } else { if proto := o.prototype; proto != nil { if receiver != o.val { return proto.self.setForeignSym(name, val, receiver, throw) } return proto.self.setOwnSym(name, val, throw), true } } return false, false } func (o *baseObject) hasOwnPropertySym(s *Symbol) bool { if o.symValues != nil { return o.symValues.has(s) } return false } func (o *baseObject) hasOwnPropertyStr(name unistring.String) bool { _, exists := o.values[name] return exists } func (o *baseObject) hasOwnPropertyIdx(idx valueInt) bool { return o.val.self.hasOwnPropertyStr(idx.string()) } func (o *baseObject) _defineOwnProperty(name unistring.String, existingValue Value, descr PropertyDescriptor, throw bool) (val Value, ok bool) { getterObj, _ := descr.Getter.(*Object) setterObj, _ := descr.Setter.(*Object) var existing *valueProperty if existingValue == nil { if !o.extensible { o.val.runtime.typeErrorResult(throw, "Cannot define property %s, object is not extensible", name) return nil, false } existing = &valueProperty{} } else { if existing, ok = existingValue.(*valueProperty); !ok { existing = &valueProperty{ writable: true, enumerable: true, configurable: true, value: existingValue, } } if !existing.configurable { if descr.Configurable == FLAG_TRUE { goto Reject } if descr.Enumerable != FLAG_NOT_SET && descr.Enumerable.Bool() != existing.enumerable { goto Reject } } if existing.accessor && descr.Value != nil || !existing.accessor && (getterObj != nil || setterObj != nil) { if !existing.configurable { goto Reject } } else if !existing.accessor { if !existing.configurable { if !existing.writable { if descr.Writable == FLAG_TRUE { goto Reject } if descr.Value != nil && !descr.Value.SameAs(existing.value) { goto Reject } } } } else { if !existing.configurable { if descr.Getter != nil && existing.getterFunc != getterObj || descr.Setter != nil && existing.setterFunc != setterObj { goto Reject } } } } if descr.Writable == FLAG_TRUE && descr.Enumerable == FLAG_TRUE && descr.Configurable == FLAG_TRUE && descr.Value != nil { return descr.Value, true } if descr.Writable != FLAG_NOT_SET { existing.writable = descr.Writable.Bool() } if descr.Enumerable != FLAG_NOT_SET { existing.enumerable = descr.Enumerable.Bool() } if descr.Configurable != FLAG_NOT_SET { existing.configurable = descr.Configurable.Bool() } if descr.Value != nil { existing.value = descr.Value existing.getterFunc = nil existing.setterFunc = nil } if descr.Value != nil || descr.Writable != FLAG_NOT_SET { existing.accessor = false } if descr.Getter != nil { existing.getterFunc = propGetter(o.val, descr.Getter, o.val.runtime) existing.value = nil existing.accessor = true } if descr.Setter != nil { existing.setterFunc = propSetter(o.val, descr.Setter, o.val.runtime) existing.value = nil existing.accessor = true } if !existing.accessor && existing.value == nil { existing.value = _undefined } return existing, true Reject: o.val.runtime.typeErrorResult(throw, "Cannot redefine property: %s", name) return nil, false } func (o *baseObject) defineOwnPropertyStr(name unistring.String, descr PropertyDescriptor, throw bool) bool { existingVal := o.values[name] if v, ok := o._defineOwnProperty(name, existingVal, descr, throw); ok { o.values[name] = v if existingVal == nil { names := copyNamesIfNeeded(o.propNames, 1) o.propNames = append(names, name) } return true } return false } func (o *baseObject) defineOwnPropertyIdx(idx valueInt, desc PropertyDescriptor, throw bool) bool { return o.val.self.defineOwnPropertyStr(idx.string(), desc, throw) } func (o *baseObject) defineOwnPropertySym(s *Symbol, descr PropertyDescriptor, throw bool) bool { var existingVal Value if o.symValues != nil { existingVal = o.symValues.get(s) } if v, ok := o._defineOwnProperty(s.descriptiveString().string(), existingVal, descr, throw); ok { if o.symValues == nil { o.symValues = newOrderedMap(nil) } o.symValues.set(s, v) return true } return false } func (o *baseObject) _put(name unistring.String, v Value) { if _, exists := o.values[name]; !exists { names := copyNamesIfNeeded(o.propNames, 1) o.propNames = append(names, name) } o.values[name] = v } func valueProp(value Value, writable, enumerable, configurable bool) Value { if writable && enumerable && configurable { return value } return &valueProperty{ value: value, writable: writable, enumerable: enumerable, configurable: configurable, } } func (o *baseObject) _putProp(name unistring.String, value Value, writable, enumerable, configurable bool) Value { prop := valueProp(value, writable, enumerable, configurable) o._put(name, prop) return prop } func (o *baseObject) _putSym(s *Symbol, prop Value) { if o.symValues == nil { o.symValues = newOrderedMap(nil) } o.symValues.set(s, prop) } func (o *baseObject) getPrivateEnv(typ *privateEnvType, create bool) *privateElements { env := o.privateElements[typ] if env != nil && create { panic(o.val.runtime.NewTypeError("Private fields for the class have already been set")) } if env == nil && create { env = &privateElements{ fields: make([]Value, typ.numFields), } if o.privateElements == nil { o.privateElements = make(map[*privateEnvType]*privateElements) } o.privateElements[typ] = env } return env } func (o *Object) tryPrimitive(methodName unistring.String) Value { if method, ok := o.self.getStr(methodName, nil).(*Object); ok { if call, ok := method.self.assertCallable(); ok { v := call(FunctionCall{ This: o, }) if _, fail := v.(*Object); !fail { return v } } } return nil } func (o *Object) ordinaryToPrimitiveNumber() Value { if v := o.tryPrimitive("valueOf"); v != nil { return v } if v := o.tryPrimitive("toString"); v != nil { return v } panic(o.runtime.NewTypeError("Could not convert %v to primitive", o.self)) } func (o *Object) ordinaryToPrimitiveString() Value { if v := o.tryPrimitive("toString"); v != nil { return v } if v := o.tryPrimitive("valueOf"); v != nil { return v } panic(o.runtime.NewTypeError("Could not convert %v (%T) to primitive", o.self, o.self)) } func (o *Object) tryExoticToPrimitive(hint Value) Value { exoticToPrimitive := toMethod(o.self.getSym(SymToPrimitive, nil)) if exoticToPrimitive != nil { ret := exoticToPrimitive(FunctionCall{ This: o, Arguments: []Value{hint}, }) if _, fail := ret.(*Object); !fail { return ret } panic(o.runtime.NewTypeError("Cannot convert object to primitive value")) } return nil } func (o *Object) toPrimitiveNumber() Value { if v := o.tryExoticToPrimitive(hintNumber); v != nil { return v } return o.ordinaryToPrimitiveNumber() } func (o *Object) toPrimitiveString() Value { if v := o.tryExoticToPrimitive(hintString); v != nil { return v } return o.ordinaryToPrimitiveString() } func (o *Object) toPrimitive() Value { if v := o.tryExoticToPrimitive(hintDefault); v != nil { return v } return o.ordinaryToPrimitiveNumber() } func (o *baseObject) assertCallable() (func(FunctionCall) Value, bool) { return nil, false } func (o *baseObject) vmCall(vm *vm, _ int) { panic(vm.r.NewTypeError("Not a function: %s", o.val.toString())) } func (o *baseObject) assertConstructor() func(args []Value, newTarget *Object) *Object { return nil } func (o *baseObject) proto() *Object { return o.prototype } func (o *baseObject) isExtensible() bool { return o.extensible } func (o *baseObject) preventExtensions(bool) bool { o.extensible = false return true } func (o *baseObject) sortLen() int { return toIntStrict(toLength(o.val.self.getStr("length", nil))) } func (o *baseObject) sortGet(i int) Value { return o.val.self.getIdx(valueInt(i), nil) } func (o *baseObject) swap(i int, j int) { ii := valueInt(i) jj := valueInt(j) x := o.val.self.getIdx(ii, nil) y := o.val.self.getIdx(jj, nil) o.val.self.setOwnIdx(ii, y, false) o.val.self.setOwnIdx(jj, x, false) } func (o *baseObject) export(ctx *objectExportCtx) interface{} { if v, exists := ctx.get(o.val); exists { return v } keys := o.stringKeys(false, nil) m := make(map[string]interface{}, len(keys)) ctx.put(o.val, m) for _, itemName := range keys { itemNameStr := itemName.String() v := o.val.self.getStr(itemName.string(), nil) if v != nil { m[itemNameStr] = exportValue(v, ctx) } else { m[itemNameStr] = nil } } return m } func (o *baseObject) exportType() reflect.Type { return reflectTypeMap } func genericExportToMap(o *Object, dst reflect.Value, typ reflect.Type, ctx *objectExportCtx) error { dst.Set(reflect.MakeMap(typ)) ctx.putTyped(o, typ, dst.Interface()) keyTyp := typ.Key() elemTyp := typ.Elem() needConvertKeys := !reflectTypeString.AssignableTo(keyTyp) iter := &enumerableIter{ o: o, wrapped: o.self.iterateStringKeys(), } r := o.runtime for item, next := iter.next(); next != nil; item, next = next() { var kv reflect.Value var err error if needConvertKeys { kv = reflect.New(keyTyp).Elem() err = r.toReflectValue(item.name, kv, ctx) if err != nil { return fmt.Errorf("could not convert map key %s to %v: %w", item.name.String(), typ, err) } } else { kv = reflect.ValueOf(item.name.String()) } ival := o.self.getStr(item.name.string(), nil) if ival != nil { vv := reflect.New(elemTyp).Elem() err = r.toReflectValue(ival, vv, ctx) if err != nil { return fmt.Errorf("could not convert map value %v to %v at key %s: %w", ival, typ, item.name.String(), err) } dst.SetMapIndex(kv, vv) } else { dst.SetMapIndex(kv, reflect.Zero(elemTyp)) } } return nil } func (o *baseObject) exportToMap(m reflect.Value, typ reflect.Type, ctx *objectExportCtx) error { return genericExportToMap(o.val, m, typ, ctx) } func genericExportToArrayOrSlice(o *Object, dst reflect.Value, typ reflect.Type, ctx *objectExportCtx) (err error) { r := o.runtime if method := toMethod(r.getV(o, SymIterator)); method != nil { // iterable var values []Value // cannot change (append to) the slice once it's been put into the cache, so we need to know its length beforehand ex := r.try(func() { values = r.iterableToList(o, method) }) if ex != nil { return ex } if typ.Kind() == reflect.Array { if dst.Len() != len(values) { return fmt.Errorf("cannot convert an iterable into an array, lengths mismatch (have %d, need %d)", len(values), dst.Len()) } } else { dst.Set(reflect.MakeSlice(typ, len(values), len(values))) } ctx.putTyped(o, typ, dst.Interface()) for i, val := range values { err = r.toReflectValue(val, dst.Index(i), ctx) if err != nil { return } } } else { // array-like var lp Value if _, ok := o.self.assertCallable(); !ok { lp = o.self.getStr("length", nil) } if lp == nil { return fmt.Errorf("cannot convert %v to %v: not an array or iterable", o, typ) } l := toIntStrict(toLength(lp)) if dst.Len() != l { if typ.Kind() == reflect.Array { return fmt.Errorf("cannot convert an array-like object into an array, lengths mismatch (have %d, need %d)", l, dst.Len()) } else { dst.Set(reflect.MakeSlice(typ, l, l)) } } ctx.putTyped(o, typ, dst.Interface()) for i := 0; i < l; i++ { val := nilSafe(o.self.getIdx(valueInt(i), nil)) err = r.toReflectValue(val, dst.Index(i), ctx) if err != nil { return } } } return } func (o *baseObject) exportToArrayOrSlice(dst reflect.Value, typ reflect.Type, ctx *objectExportCtx) error { return genericExportToArrayOrSlice(o.val, dst, typ, ctx) } type enumerableFlag int const ( _ENUM_UNKNOWN enumerableFlag = iota _ENUM_FALSE _ENUM_TRUE ) type propIterItem struct { name Value value Value enumerable enumerableFlag } type objectPropIter struct { o *baseObject propNames []unistring.String idx int } type recursivePropIter struct { o objectImpl cur iterNextFunc seen map[unistring.String]struct{} } type enumerableIter struct { o *Object wrapped iterNextFunc } func (i *enumerableIter) next() (propIterItem, iterNextFunc) { for { var item propIterItem item, i.wrapped = i.wrapped() if i.wrapped == nil { return item, nil } if item.enumerable == _ENUM_FALSE { continue } if item.enumerable == _ENUM_UNKNOWN { var prop Value if item.value == nil { prop = i.o.getOwnProp(item.name) } else { prop = item.value } if prop == nil { continue } if prop, ok := prop.(*valueProperty); ok { if !prop.enumerable { continue } } } return item, i.next } } func (i *recursivePropIter) next() (propIterItem, iterNextFunc) { for { var item propIterItem item, i.cur = i.cur() if i.cur == nil { if proto := i.o.proto(); proto != nil { i.cur = proto.self.iterateStringKeys() i.o = proto.self continue } return propIterItem{}, nil } name := item.name.string() if _, exists := i.seen[name]; !exists { i.seen[name] = struct{}{} return item, i.next } } } func enumerateRecursive(o *Object) iterNextFunc { return (&enumerableIter{ o: o, wrapped: (&recursivePropIter{ o: o.self, cur: o.self.iterateStringKeys(), seen: make(map[unistring.String]struct{}), }).next, }).next } func (i *objectPropIter) next() (propIterItem, iterNextFunc) { for i.idx < len(i.propNames) { name := i.propNames[i.idx] i.idx++ prop := i.o.values[name] if prop != nil { return propIterItem{name: stringValueFromRaw(name), value: prop}, i.next } } clearNamesCopyMarker(i.propNames) return propIterItem{}, nil } var copyMarker = unistring.String(" ") // Set a copy-on-write flag so that any subsequent modifications of anything below the current length // trigger a copy. // The marker is a special value put at the index position of cap-1. Capacity is set so that the marker is // beyond the current length (therefore invisible to normal slice operations). // This function is called before an iteration begins to avoid copying of the names array if // there are no modifications within the iteration. // Note that the copying also occurs in two cases: nested iterations (on the same object) and // iterations after a previously abandoned iteration (because there is currently no mechanism to close an // iterator). It is still better than copying every time. func prepareNamesForCopy(names []unistring.String) []unistring.String { if len(names) == 0 { return names } if namesMarkedForCopy(names) || cap(names) == len(names) { var newcap int if cap(names) == len(names) { newcap = growCap(len(names)+1, len(names), cap(names)) } else { newcap = cap(names) } newNames := make([]unistring.String, len(names), newcap) copy(newNames, names) names = newNames } names[cap(names)-1 : cap(names)][0] = copyMarker return names } func namesMarkedForCopy(names []unistring.String) bool { return cap(names) > len(names) && names[cap(names)-1 : cap(names)][0] == copyMarker } func clearNamesCopyMarker(names []unistring.String) { if cap(names) > len(names) { names[cap(names)-1 : cap(names)][0] = "" } } func copyNamesIfNeeded(names []unistring.String, extraCap int) []unistring.String { if namesMarkedForCopy(names) && len(names)+extraCap >= cap(names) { var newcap int newsize := len(names) + extraCap + 1 if newsize > cap(names) { newcap = growCap(newsize, len(names), cap(names)) } else { newcap = cap(names) } newNames := make([]unistring.String, len(names), newcap) copy(newNames, names) return newNames } return names } func (o *baseObject) iterateStringKeys() iterNextFunc { o.ensurePropOrder() propNames := prepareNamesForCopy(o.propNames) o.propNames = propNames return (&objectPropIter{ o: o, propNames: propNames, }).next } type objectSymbolIter struct { iter *orderedMapIter } func (i *objectSymbolIter) next() (propIterItem, iterNextFunc) { entry := i.iter.next() if entry != nil { return propIterItem{ name: entry.key, value: entry.value, }, i.next } return propIterItem{}, nil } func (o *baseObject) iterateSymbols() iterNextFunc { if o.symValues != nil { return (&objectSymbolIter{ iter: o.symValues.newIter(), }).next } return func() (propIterItem, iterNextFunc) { return propIterItem{}, nil } } type objectAllPropIter struct { o *Object curStr iterNextFunc } func (i *objectAllPropIter) next() (propIterItem, iterNextFunc) { item, next := i.curStr() if next != nil { i.curStr = next return item, i.next } return i.o.self.iterateSymbols()() } func (o *baseObject) iterateKeys() iterNextFunc { return (&objectAllPropIter{ o: o.val, curStr: o.val.self.iterateStringKeys(), }).next } func (o *baseObject) equal(objectImpl) bool { // Rely on parent reference comparison return false } // hopefully this gets inlined func (o *baseObject) ensurePropOrder() { if o.lastSortedPropLen < len(o.propNames) { o.fixPropOrder() } } // Reorder property names so that any integer properties are shifted to the beginning of the list // in ascending order. This is to conform to https://262.ecma-international.org/#sec-ordinaryownpropertykeys. // Personally I think this requirement is strange. I can sort of understand where they are coming from, // this way arrays can be specified just as objects with a 'magic' length property. However, I think // it's safe to assume most devs don't use Objects to store integer properties. Therefore, performing // property type checks when adding (and potentially looking up) properties would be unreasonable. // Instead, we keep insertion order and only change it when (if) the properties get enumerated. func (o *baseObject) fixPropOrder() { names := o.propNames for i := o.lastSortedPropLen; i < len(names); i++ { name := names[i] if idx := strToArrayIdx(name); idx != math.MaxUint32 { k := sort.Search(o.idxPropCount, func(j int) bool { return strToArrayIdx(names[j]) >= idx }) if k < i { if namesMarkedForCopy(names) { newNames := make([]unistring.String, len(names), cap(names)) copy(newNames[:k], names) copy(newNames[k+1:i+1], names[k:i]) copy(newNames[i+1:], names[i+1:]) names = newNames o.propNames = names } else { copy(names[k+1:i+1], names[k:i]) } names[k] = name } o.idxPropCount++ } } o.lastSortedPropLen = len(names) } func (o *baseObject) stringKeys(all bool, keys []Value) []Value { o.ensurePropOrder() if all { for _, k := range o.propNames { keys = append(keys, stringValueFromRaw(k)) } } else { for _, k := range o.propNames { prop := o.values[k] if prop, ok := prop.(*valueProperty); ok && !prop.enumerable { continue } keys = append(keys, stringValueFromRaw(k)) } } return keys } func (o *baseObject) symbols(all bool, accum []Value) []Value { if o.symValues != nil { iter := o.symValues.newIter() if all { for { entry := iter.next() if entry == nil { break } accum = append(accum, entry.key) } } else { for { entry := iter.next() if entry == nil { break } if prop, ok := entry.value.(*valueProperty); ok { if !prop.enumerable { continue } } accum = append(accum, entry.key) } } } return accum } func (o *baseObject) keys(all bool, accum []Value) []Value { return o.symbols(all, o.val.self.stringKeys(all, accum)) } func (o *baseObject) hasInstance(Value) bool { panic(o.val.runtime.NewTypeError("Expecting a function in instanceof check, but got %s", o.val.toString())) } func toMethod(v Value) func(FunctionCall) Value { if v == nil || IsUndefined(v) || IsNull(v) { return nil } if obj, ok := v.(*Object); ok { if call, ok := obj.self.assertCallable(); ok { return call } } panic(newTypeError("%s is not a method", v.String())) } func instanceOfOperator(o Value, c *Object) bool { if instOfHandler := toMethod(c.self.getSym(SymHasInstance, c)); instOfHandler != nil { return instOfHandler(FunctionCall{ This: c, Arguments: []Value{o}, }).ToBoolean() } return c.self.hasInstance(o) } func (o *Object) get(p Value, receiver Value) Value { switch p := p.(type) { case valueInt: return o.self.getIdx(p, receiver) case *Symbol: return o.self.getSym(p, receiver) default: return o.self.getStr(p.string(), receiver) } } func (o *Object) getOwnProp(p Value) Value { switch p := p.(type) { case valueInt: return o.self.getOwnPropIdx(p) case *Symbol: return o.self.getOwnPropSym(p) default: return o.self.getOwnPropStr(p.string()) } } func (o *Object) hasOwnProperty(p Value) bool { switch p := p.(type) { case valueInt: return o.self.hasOwnPropertyIdx(p) case *Symbol: return o.self.hasOwnPropertySym(p) default: return o.self.hasOwnPropertyStr(p.string()) } } func (o *Object) hasProperty(p Value) bool { switch p := p.(type) { case valueInt: return o.self.hasPropertyIdx(p) case *Symbol: return o.self.hasPropertySym(p) default: return o.self.hasPropertyStr(p.string()) } } func (o *Object) setStr(name unistring.String, val, receiver Value, throw bool) bool { if receiver == o { return o.self.setOwnStr(name, val, throw) } else { if res, ok := o.self.setForeignStr(name, val, receiver, throw); !ok { if robj, ok := receiver.(*Object); ok { if prop := robj.self.getOwnPropStr(name); prop != nil { if desc, ok := prop.(*valueProperty); ok { if desc.accessor { o.runtime.typeErrorResult(throw, "Receiver property %s is an accessor", name) return false } if !desc.writable { o.runtime.typeErrorResult(throw, "Cannot assign to read only property '%s'", name) return false } } return robj.self.defineOwnPropertyStr(name, PropertyDescriptor{Value: val}, throw) } else { return robj.self.defineOwnPropertyStr(name, PropertyDescriptor{ Value: val, Writable: FLAG_TRUE, Configurable: FLAG_TRUE, Enumerable: FLAG_TRUE, }, throw) } } else { o.runtime.typeErrorResult(throw, "Receiver is not an object: %v", receiver) return false } } else { return res } } } func (o *Object) set(name Value, val, receiver Value, throw bool) bool { switch name := name.(type) { case valueInt: return o.setIdx(name, val, receiver, throw) case *Symbol: return o.setSym(name, val, receiver, throw) default: return o.setStr(name.string(), val, receiver, throw) } } func (o *Object) setOwn(name Value, val Value, throw bool) bool { switch name := name.(type) { case valueInt: return o.self.setOwnIdx(name, val, throw) case *Symbol: return o.self.setOwnSym(name, val, throw) default: return o.self.setOwnStr(name.string(), val, throw) } } func (o *Object) setIdx(name valueInt, val, receiver Value, throw bool) bool { if receiver == o { return o.self.setOwnIdx(name, val, throw) } else { if res, ok := o.self.setForeignIdx(name, val, receiver, throw); !ok { if robj, ok := receiver.(*Object); ok { if prop := robj.self.getOwnPropIdx(name); prop != nil { if desc, ok := prop.(*valueProperty); ok { if desc.accessor { o.runtime.typeErrorResult(throw, "Receiver property %s is an accessor", name) return false } if !desc.writable { o.runtime.typeErrorResult(throw, "Cannot assign to read only property '%s'", name) return false } } robj.self.defineOwnPropertyIdx(name, PropertyDescriptor{Value: val}, throw) } else { robj.self.defineOwnPropertyIdx(name, PropertyDescriptor{ Value: val, Writable: FLAG_TRUE, Configurable: FLAG_TRUE, Enumerable: FLAG_TRUE, }, throw) } } else { o.runtime.typeErrorResult(throw, "Receiver is not an object: %v", receiver) return false } } else { return res } } return true } func (o *Object) setSym(name *Symbol, val, receiver Value, throw bool) bool { if receiver == o { return o.self.setOwnSym(name, val, throw) } else { if res, ok := o.self.setForeignSym(name, val, receiver, throw); !ok { if robj, ok := receiver.(*Object); ok { if prop := robj.self.getOwnPropSym(name); prop != nil { if desc, ok := prop.(*valueProperty); ok { if desc.accessor { o.runtime.typeErrorResult(throw, "Receiver property %s is an accessor", name) return false } if !desc.writable { o.runtime.typeErrorResult(throw, "Cannot assign to read only property '%s'", name) return false } } robj.self.defineOwnPropertySym(name, PropertyDescriptor{Value: val}, throw) } else { robj.self.defineOwnPropertySym(name, PropertyDescriptor{ Value: val, Writable: FLAG_TRUE, Configurable: FLAG_TRUE, Enumerable: FLAG_TRUE, }, throw) } } else { o.runtime.typeErrorResult(throw, "Receiver is not an object: %v", receiver) return false } } else { return res } } return true } func (o *Object) delete(n Value, throw bool) bool { switch n := n.(type) { case valueInt: return o.self.deleteIdx(n, throw) case *Symbol: return o.self.deleteSym(n, throw) default: return o.self.deleteStr(n.string(), throw) } } func (o *Object) defineOwnProperty(n Value, desc PropertyDescriptor, throw bool) bool { switch n := n.(type) { case valueInt: return o.self.defineOwnPropertyIdx(n, desc, throw) case *Symbol: return o.self.defineOwnPropertySym(n, desc, throw) default: return o.self.defineOwnPropertyStr(n.string(), desc, throw) } } func (o *Object) getWeakRefs() map[weakMap]Value { refs := o.weakRefs if refs == nil { refs = make(map[weakMap]Value) o.weakRefs = refs } return refs } func (o *Object) getId() uint64 { id := o.id if id == 0 { id = o.runtime.genId() o.id = id } return id } func (o *guardedObject) guard(props ...unistring.String) { if o.guardedProps == nil { o.guardedProps = make(map[unistring.String]struct{}) } for _, p := range props { o.guardedProps[p] = struct{}{} } } func (o *guardedObject) check(p unistring.String) { if _, exists := o.guardedProps[p]; exists { o.val.self = &o.baseObject } } func (o *guardedObject) setOwnStr(p unistring.String, v Value, throw bool) bool { res := o.baseObject.setOwnStr(p, v, throw) if res { o.check(p) } return res } func (o *guardedObject) defineOwnPropertyStr(name unistring.String, desc PropertyDescriptor, throw bool) bool { res := o.baseObject.defineOwnPropertyStr(name, desc, throw) if res { o.check(name) } return res } func (o *guardedObject) deleteStr(name unistring.String, throw bool) bool { res := o.baseObject.deleteStr(name, throw) if res { o.check(name) } return res } func (ctx *objectExportCtx) get(key *Object) (interface{}, bool) { if v, exists := ctx.cache[key]; exists { if item, ok := v.(objectExportCacheItem); ok { r, exists := item[key.self.exportType()] return r, exists } else { return v, true } } return nil, false } func (ctx *objectExportCtx) getTyped(key *Object, typ reflect.Type) (interface{}, bool) { if v, exists := ctx.cache[key]; exists { if item, ok := v.(objectExportCacheItem); ok { r, exists := item[typ] return r, exists } else { if reflect.TypeOf(v) == typ { return v, true } } } return nil, false } func (ctx *objectExportCtx) put(key *Object, value interface{}) { if ctx.cache == nil { ctx.cache = make(map[*Object]interface{}) } if item, ok := ctx.cache[key].(objectExportCacheItem); ok { item[key.self.exportType()] = value } else { ctx.cache[key] = value } } func (ctx *objectExportCtx) putTyped(key *Object, typ reflect.Type, value interface{}) { if ctx.cache == nil { ctx.cache = make(map[*Object]interface{}) } v, exists := ctx.cache[key] if exists { if item, ok := ctx.cache[key].(objectExportCacheItem); ok { item[typ] = value } else { m := make(objectExportCacheItem, 2) m[key.self.exportType()] = v m[typ] = value ctx.cache[key] = m } } else { m := make(objectExportCacheItem) m[typ] = value ctx.cache[key] = m } } type enumPropertiesIter struct { o *Object wrapped iterNextFunc } func (i *enumPropertiesIter) next() (propIterItem, iterNextFunc) { for i.wrapped != nil { item, next := i.wrapped() i.wrapped = next if next == nil { break } if item.value == nil { item.value = i.o.get(item.name, nil) if item.value == nil { continue } } else { if prop, ok := item.value.(*valueProperty); ok { item.value = prop.get(i.o) } } return item, i.next } return propIterItem{}, nil } func iterateEnumerableProperties(o *Object) iterNextFunc { return (&enumPropertiesIter{ o: o, wrapped: (&enumerableIter{ o: o, wrapped: o.self.iterateKeys(), }).next, }).next } func iterateEnumerableStringProperties(o *Object) iterNextFunc { return (&enumPropertiesIter{ o: o, wrapped: (&enumerableIter{ o: o, wrapped: o.self.iterateStringKeys(), }).next, }).next } type privateId struct { typ *privateEnvType name unistring.String idx uint32 isMethod bool } type privateEnvType struct { numFields, numMethods uint32 } type privateNames map[unistring.String]*privateId type privateEnv struct { instanceType, staticType *privateEnvType names privateNames outer *privateEnv } type privateElements struct { methods []Value fields []Value } func (i *privateId) String() string { return "#" + i.name.String() } func (i *privateId) string() unistring.String { return privateIdString(i.name) }