package fast import ( "fmt" "strconv" ) const ( kMinimalTargetExponent = -60 kMaximalTargetExponent = -32 kTen4 = 10000 kTen5 = 100000 kTen6 = 1000000 kTen7 = 10000000 kTen8 = 100000000 kTen9 = 1000000000 ) type Mode int const ( ModeShortest Mode = iota ModePrecision ) // Adjusts the last digit of the generated number, and screens out generated // solutions that may be inaccurate. A solution may be inaccurate if it is // outside the safe interval, or if we cannot prove that it is closer to the // input than a neighboring representation of the same length. // // Input: * buffer containing the digits of too_high / 10^kappa // - distance_too_high_w == (too_high - w).f() * unit // - unsafe_interval == (too_high - too_low).f() * unit // - rest = (too_high - buffer * 10^kappa).f() * unit // - ten_kappa = 10^kappa * unit // - unit = the common multiplier // // Output: returns true if the buffer is guaranteed to contain the closest // // representable number to the input. // Modifies the generated digits in the buffer to approach (round towards) w. func roundWeed(buffer []byte, distance_too_high_w, unsafe_interval, rest, ten_kappa, unit uint64) bool { small_distance := distance_too_high_w - unit big_distance := distance_too_high_w + unit // Let w_low = too_high - big_distance, and // w_high = too_high - small_distance. // Note: w_low < w < w_high // // The real w (* unit) must lie somewhere inside the interval // ]w_low; w_high[ (often written as "(w_low; w_high)") // Basically the buffer currently contains a number in the unsafe interval // ]too_low; too_high[ with too_low < w < too_high // // too_high - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - // ^v 1 unit ^ ^ ^ ^ // boundary_high --------------------- . . . . // ^v 1 unit . . . . // - - - - - - - - - - - - - - - - - - - + - - + - - - - - - . . // . . ^ . . // . big_distance . . . // . . . . rest // small_distance . . . . // v . . . . // w_high - - - - - - - - - - - - - - - - - - . . . . // ^v 1 unit . . . . // w ---------------------------------------- . . . . // ^v 1 unit v . . . // w_low - - - - - - - - - - - - - - - - - - - - - . . . // . . v // buffer --------------------------------------------------+-------+-------- // . . // safe_interval . // v . // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - . // ^v 1 unit . // boundary_low ------------------------- unsafe_interval // ^v 1 unit v // too_low - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - // // // Note that the value of buffer could lie anywhere inside the range too_low // to too_high. // // boundary_low, boundary_high and w are approximations of the real boundaries // and v (the input number). They are guaranteed to be precise up to one unit. // In fact the error is guaranteed to be strictly less than one unit. // // Anything that lies outside the unsafe interval is guaranteed not to round // to v when read again. // Anything that lies inside the safe interval is guaranteed to round to v // when read again. // If the number inside the buffer lies inside the unsafe interval but not // inside the safe interval then we simply do not know and bail out (returning // false). // // Similarly we have to take into account the imprecision of 'w' when finding // the closest representation of 'w'. If we have two potential // representations, and one is closer to both w_low and w_high, then we know // it is closer to the actual value v. // // By generating the digits of too_high we got the largest (closest to // too_high) buffer that is still in the unsafe interval. In the case where // w_high < buffer < too_high we try to decrement the buffer. // This way the buffer approaches (rounds towards) w. // There are 3 conditions that stop the decrementation process: // 1) the buffer is already below w_high // 2) decrementing the buffer would make it leave the unsafe interval // 3) decrementing the buffer would yield a number below w_high and farther // away than the current number. In other words: // (buffer{-1} < w_high) && w_high - buffer{-1} > buffer - w_high // Instead of using the buffer directly we use its distance to too_high. // Conceptually rest ~= too_high - buffer // We need to do the following tests in this order to avoid over- and // underflows. _DCHECK(rest <= unsafe_interval) for rest < small_distance && // Negated condition 1 unsafe_interval-rest >= ten_kappa && // Negated condition 2 (rest+ten_kappa < small_distance || // buffer{-1} > w_high small_distance-rest >= rest+ten_kappa-small_distance) { buffer[len(buffer)-1]-- rest += ten_kappa } // We have approached w+ as much as possible. We now test if approaching w- // would require changing the buffer. If yes, then we have two possible // representations close to w, but we cannot decide which one is closer. if rest < big_distance && unsafe_interval-rest >= ten_kappa && (rest+ten_kappa < big_distance || big_distance-rest > rest+ten_kappa-big_distance) { return false } // Weeding test. // The safe interval is [too_low + 2 ulp; too_high - 2 ulp] // Since too_low = too_high - unsafe_interval this is equivalent to // [too_high - unsafe_interval + 4 ulp; too_high - 2 ulp] // Conceptually we have: rest ~= too_high - buffer return (2*unit <= rest) && (rest <= unsafe_interval-4*unit) } // Rounds the buffer upwards if the result is closer to v by possibly adding // 1 to the buffer. If the precision of the calculation is not sufficient to // round correctly, return false. // The rounding might shift the whole buffer in which case the kappa is // adjusted. For example "99", kappa = 3 might become "10", kappa = 4. // // If 2*rest > ten_kappa then the buffer needs to be round up. // rest can have an error of +/- 1 unit. This function accounts for the // imprecision and returns false, if the rounding direction cannot be // unambiguously determined. // // Precondition: rest < ten_kappa. func roundWeedCounted(buffer []byte, rest, ten_kappa, unit uint64, kappa *int) bool { _DCHECK(rest < ten_kappa) // The following tests are done in a specific order to avoid overflows. They // will work correctly with any uint64 values of rest < ten_kappa and unit. // // If the unit is too big, then we don't know which way to round. For example // a unit of 50 means that the real number lies within rest +/- 50. If // 10^kappa == 40 then there is no way to tell which way to round. if unit >= ten_kappa { return false } // Even if unit is just half the size of 10^kappa we are already completely // lost. (And after the previous test we know that the expression will not // over/underflow.) if ten_kappa-unit <= unit { return false } // If 2 * (rest + unit) <= 10^kappa we can safely round down. if (ten_kappa-rest > rest) && (ten_kappa-2*rest >= 2*unit) { return true } // If 2 * (rest - unit) >= 10^kappa, then we can safely round up. if (rest > unit) && (ten_kappa-(rest-unit) <= (rest - unit)) { // Increment the last digit recursively until we find a non '9' digit. buffer[len(buffer)-1]++ for i := len(buffer) - 1; i > 0; i-- { if buffer[i] != '0'+10 { break } buffer[i] = '0' buffer[i-1]++ } // If the first digit is now '0'+ 10 we had a buffer with all '9's. With the // exception of the first digit all digits are now '0'. Simply switch the // first digit to '1' and adjust the kappa. Example: "99" becomes "10" and // the power (the kappa) is increased. if buffer[0] == '0'+10 { buffer[0] = '1' *kappa += 1 } return true } return false } // Returns the biggest power of ten that is less than or equal than the given // number. We furthermore receive the maximum number of bits 'number' has. // If number_bits == 0 then 0^-1 is returned // The number of bits must be <= 32. // Precondition: number < (1 << (number_bits + 1)). func biggestPowerTen(number uint32, number_bits int) (power uint32, exponent int) { switch number_bits { case 32, 31, 30: if kTen9 <= number { power = kTen9 exponent = 9 break } fallthrough case 29, 28, 27: if kTen8 <= number { power = kTen8 exponent = 8 break } fallthrough case 26, 25, 24: if kTen7 <= number { power = kTen7 exponent = 7 break } fallthrough case 23, 22, 21, 20: if kTen6 <= number { power = kTen6 exponent = 6 break } fallthrough case 19, 18, 17: if kTen5 <= number { power = kTen5 exponent = 5 break } fallthrough case 16, 15, 14: if kTen4 <= number { power = kTen4 exponent = 4 break } fallthrough case 13, 12, 11, 10: if 1000 <= number { power = 1000 exponent = 3 break } fallthrough case 9, 8, 7: if 100 <= number { power = 100 exponent = 2 break } fallthrough case 6, 5, 4: if 10 <= number { power = 10 exponent = 1 break } fallthrough case 3, 2, 1: if 1 <= number { power = 1 exponent = 0 break } fallthrough case 0: power = 0 exponent = -1 } return } // Generates the digits of input number w. // w is a floating-point number (DiyFp), consisting of a significand and an // exponent. Its exponent is bounded by kMinimalTargetExponent and // kMaximalTargetExponent. // // Hence -60 <= w.e() <= -32. // // Returns false if it fails, in which case the generated digits in the buffer // should not be used. // Preconditions: // - low, w and high are correct up to 1 ulp (unit in the last place). That // is, their error must be less than a unit of their last digits. // - low.e() == w.e() == high.e() // - low < w < high, and taking into account their error: low~ <= high~ // - kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent // // Postconditions: returns false if procedure fails. // // otherwise: // * buffer is not null-terminated, but len contains the number of digits. // * buffer contains the shortest possible decimal digit-sequence // such that LOW < buffer * 10^kappa < HIGH, where LOW and HIGH are the // correct values of low and high (without their error). // * if more than one decimal representation gives the minimal number of // decimal digits then the one closest to W (where W is the correct value // of w) is chosen. // // Remark: this procedure takes into account the imprecision of its input // // numbers. If the precision is not enough to guarantee all the postconditions // then false is returned. This usually happens rarely (~0.5%). // // Say, for the sake of example, that // // w.e() == -48, and w.f() == 0x1234567890ABCDEF // // w's value can be computed by w.f() * 2^w.e() // We can obtain w's integral digits by simply shifting w.f() by -w.e(). // // -> w's integral part is 0x1234 // w's fractional part is therefore 0x567890ABCDEF. // // Printing w's integral part is easy (simply print 0x1234 in decimal). // In order to print its fraction we repeatedly multiply the fraction by 10 and // get each digit. Example the first digit after the point would be computed by // // (0x567890ABCDEF * 10) >> 48. -> 3 // // The whole thing becomes slightly more complicated because we want to stop // once we have enough digits. That is, once the digits inside the buffer // represent 'w' we can stop. Everything inside the interval low - high // represents w. However we have to pay attention to low, high and w's // imprecision. func digitGen(low, w, high diyfp, buffer []byte) (kappa int, buf []byte, res bool) { _DCHECK(low.e == w.e && w.e == high.e) _DCHECK(low.f+1 <= high.f-1) _DCHECK(kMinimalTargetExponent <= w.e && w.e <= kMaximalTargetExponent) // low, w and high are imprecise, but by less than one ulp (unit in the last // place). // If we remove (resp. add) 1 ulp from low (resp. high) we are certain that // the new numbers are outside of the interval we want the final // representation to lie in. // Inversely adding (resp. removing) 1 ulp from low (resp. high) would yield // numbers that are certain to lie in the interval. We will use this fact // later on. // We will now start by generating the digits within the uncertain // interval. Later we will weed out representations that lie outside the safe // interval and thus _might_ lie outside the correct interval. unit := uint64(1) too_low := diyfp{f: low.f - unit, e: low.e} too_high := diyfp{f: high.f + unit, e: high.e} // too_low and too_high are guaranteed to lie outside the interval we want the // generated number in. unsafe_interval := too_high.minus(too_low) // We now cut the input number into two parts: the integral digits and the // fractionals. We will not write any decimal separator though, but adapt // kappa instead. // Reminder: we are currently computing the digits (stored inside the buffer) // such that: too_low < buffer * 10^kappa < too_high // We use too_high for the digit_generation and stop as soon as possible. // If we stop early we effectively round down. one := diyfp{f: 1 << -w.e, e: w.e} // Division by one is a shift. integrals := uint32(too_high.f >> -one.e) // Modulo by one is an and. fractionals := too_high.f & (one.f - 1) divisor, divisor_exponent := biggestPowerTen(integrals, diyFpKSignificandSize-(-one.e)) kappa = divisor_exponent + 1 buf = buffer for kappa > 0 { digit := int(integrals / divisor) buf = append(buf, byte('0'+digit)) integrals %= divisor kappa-- // Note that kappa now equals the exponent of the divisor and that the // invariant thus holds again. rest := uint64(integrals)<<-one.e + fractionals // Invariant: too_high = buffer * 10^kappa + DiyFp(rest, one.e) // Reminder: unsafe_interval.e == one.e if rest < unsafe_interval.f { // Rounding down (by not emitting the remaining digits) yields a number // that lies within the unsafe interval. res = roundWeed(buf, too_high.minus(w).f, unsafe_interval.f, rest, uint64(divisor)<<-one.e, unit) return } divisor /= 10 } // The integrals have been generated. We are at the point of the decimal // separator. In the following loop we simply multiply the remaining digits by // 10 and divide by one. We just need to pay attention to multiply associated // data (like the interval or 'unit'), too. // Note that the multiplication by 10 does not overflow, because w.e >= -60 // and thus one.e >= -60. _DCHECK(one.e >= -60) _DCHECK(fractionals < one.f) _DCHECK(0xFFFFFFFFFFFFFFFF/10 >= one.f) for { fractionals *= 10 unit *= 10 unsafe_interval.f *= 10 // Integer division by one. digit := byte(fractionals >> -one.e) buf = append(buf, '0'+digit) fractionals &= one.f - 1 // Modulo by one. kappa-- if fractionals < unsafe_interval.f { res = roundWeed(buf, too_high.minus(w).f*unit, unsafe_interval.f, fractionals, one.f, unit) return } } } // Generates (at most) requested_digits of input number w. // w is a floating-point number (DiyFp), consisting of a significand and an // exponent. Its exponent is bounded by kMinimalTargetExponent and // kMaximalTargetExponent. // // Hence -60 <= w.e() <= -32. // // Returns false if it fails, in which case the generated digits in the buffer // should not be used. // Preconditions: // - w is correct up to 1 ulp (unit in the last place). That // is, its error must be strictly less than a unit of its last digit. // - kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent // // Postconditions: returns false if procedure fails. // // otherwise: // * buffer is not null-terminated, but length contains the number of // digits. // * the representation in buffer is the most precise representation of // requested_digits digits. // * buffer contains at most requested_digits digits of w. If there are less // than requested_digits digits then some trailing '0's have been removed. // * kappa is such that // w = buffer * 10^kappa + eps with |eps| < 10^kappa / 2. // // Remark: This procedure takes into account the imprecision of its input // // numbers. If the precision is not enough to guarantee all the postconditions // then false is returned. This usually happens rarely, but the failure-rate // increases with higher requested_digits. func digitGenCounted(w diyfp, requested_digits int, buffer []byte) (kappa int, buf []byte, res bool) { _DCHECK(kMinimalTargetExponent <= w.e && w.e <= kMaximalTargetExponent) // w is assumed to have an error less than 1 unit. Whenever w is scaled we // also scale its error. w_error := uint64(1) // We cut the input number into two parts: the integral digits and the // fractional digits. We don't emit any decimal separator, but adapt kappa // instead. Example: instead of writing "1.2" we put "12" into the buffer and // increase kappa by 1. one := diyfp{f: 1 << -w.e, e: w.e} // Division by one is a shift. integrals := uint32(w.f >> -one.e) // Modulo by one is an and. fractionals := w.f & (one.f - 1) divisor, divisor_exponent := biggestPowerTen(integrals, diyFpKSignificandSize-(-one.e)) kappa = divisor_exponent + 1 buf = buffer // Loop invariant: buffer = w / 10^kappa (integer division) // The invariant holds for the first iteration: kappa has been initialized // with the divisor exponent + 1. And the divisor is the biggest power of ten // that is smaller than 'integrals'. for kappa > 0 { digit := byte(integrals / divisor) buf = append(buf, '0'+digit) requested_digits-- integrals %= divisor kappa-- // Note that kappa now equals the exponent of the divisor and that the // invariant thus holds again. if requested_digits == 0 { break } divisor /= 10 } if requested_digits == 0 { rest := uint64(integrals)<<-one.e + fractionals res = roundWeedCounted(buf, rest, uint64(divisor)<<-one.e, w_error, &kappa) return } // The integrals have been generated. We are at the point of the decimal // separator. In the following loop we simply multiply the remaining digits by // 10 and divide by one. We just need to pay attention to multiply associated // data (the 'unit'), too. // Note that the multiplication by 10 does not overflow, because w.e >= -60 // and thus one.e >= -60. _DCHECK(one.e >= -60) _DCHECK(fractionals < one.f) _DCHECK(0xFFFFFFFFFFFFFFFF/10 >= one.f) for requested_digits > 0 && fractionals > w_error { fractionals *= 10 w_error *= 10 // Integer division by one. digit := byte(fractionals >> -one.e) buf = append(buf, '0'+digit) requested_digits-- fractionals &= one.f - 1 // Modulo by one. kappa-- } if requested_digits != 0 { res = false } else { res = roundWeedCounted(buf, fractionals, one.f, w_error, &kappa) } return } // Provides a decimal representation of v. // Returns true if it succeeds, otherwise the result cannot be trusted. // There will be *length digits inside the buffer (not null-terminated). // If the function returns true then // // v == (double) (buffer * 10^decimal_exponent). // // The digits in the buffer are the shortest representation possible: no // 0.09999999999999999 instead of 0.1. The shorter representation will even be // chosen even if the longer one would be closer to v. // The last digit will be closest to the actual v. That is, even if several // digits might correctly yield 'v' when read again, the closest will be // computed. func grisu3(f float64, buffer []byte) (digits []byte, decimal_exponent int, result bool) { v := double(f) w := v.toNormalizedDiyfp() // boundary_minus and boundary_plus are the boundaries between v and its // closest floating-point neighbors. Any number strictly between // boundary_minus and boundary_plus will round to v when convert to a double. // Grisu3 will never output representations that lie exactly on a boundary. boundary_minus, boundary_plus := v.normalizedBoundaries() ten_mk_minimal_binary_exponent := kMinimalTargetExponent - (w.e + diyFpKSignificandSize) ten_mk_maximal_binary_exponent := kMaximalTargetExponent - (w.e + diyFpKSignificandSize) ten_mk, mk := getCachedPowerForBinaryExponentRange(ten_mk_minimal_binary_exponent, ten_mk_maximal_binary_exponent) _DCHECK( (kMinimalTargetExponent <= w.e+ten_mk.e+diyFpKSignificandSize) && (kMaximalTargetExponent >= w.e+ten_mk.e+diyFpKSignificandSize)) // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a // 64 bit significand and ten_mk is thus only precise up to 64 bits. // The DiyFp::Times procedure rounds its result, and ten_mk is approximated // too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now // off by a small amount. // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w. // In other words: let f = scaled_w.f() and e = scaled_w.e(), then // (f-1) * 2^e < w*10^k < (f+1) * 2^e scaled_w := w.times(ten_mk) _DCHECK(scaled_w.e == boundary_plus.e+ten_mk.e+diyFpKSignificandSize) // In theory it would be possible to avoid some recomputations by computing // the difference between w and boundary_minus/plus (a power of 2) and to // compute scaled_boundary_minus/plus by subtracting/adding from // scaled_w. However the code becomes much less readable and the speed // enhancements are not terrific. scaled_boundary_minus := boundary_minus.times(ten_mk) scaled_boundary_plus := boundary_plus.times(ten_mk) // DigitGen will generate the digits of scaled_w. Therefore we have // v == (double) (scaled_w * 10^-mk). // Set decimal_exponent == -mk and pass it to DigitGen. If scaled_w is not an // integer than it will be updated. For instance if scaled_w == 1.23 then // the buffer will be filled with "123" und the decimal_exponent will be // decreased by 2. var kappa int kappa, digits, result = digitGen(scaled_boundary_minus, scaled_w, scaled_boundary_plus, buffer) decimal_exponent = -mk + kappa return } // The "counted" version of grisu3 (see above) only generates requested_digits // number of digits. This version does not generate the shortest representation, // and with enough requested digits 0.1 will at some point print as 0.9999999... // Grisu3 is too imprecise for real halfway cases (1.5 will not work) and // therefore the rounding strategy for halfway cases is irrelevant. func grisu3Counted(v float64, requested_digits int, buffer []byte) (digits []byte, decimal_exponent int, result bool) { w := double(v).toNormalizedDiyfp() ten_mk_minimal_binary_exponent := kMinimalTargetExponent - (w.e + diyFpKSignificandSize) ten_mk_maximal_binary_exponent := kMaximalTargetExponent - (w.e + diyFpKSignificandSize) ten_mk, mk := getCachedPowerForBinaryExponentRange(ten_mk_minimal_binary_exponent, ten_mk_maximal_binary_exponent) _DCHECK( (kMinimalTargetExponent <= w.e+ten_mk.e+diyFpKSignificandSize) && (kMaximalTargetExponent >= w.e+ten_mk.e+diyFpKSignificandSize)) // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a // 64 bit significand and ten_mk is thus only precise up to 64 bits. // The DiyFp::Times procedure rounds its result, and ten_mk is approximated // too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now // off by a small amount. // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w. // In other words: let f = scaled_w.f() and e = scaled_w.e(), then // (f-1) * 2^e < w*10^k < (f+1) * 2^e scaled_w := w.times(ten_mk) // We now have (double) (scaled_w * 10^-mk). // DigitGen will generate the first requested_digits digits of scaled_w and // return together with a kappa such that scaled_w ~= buffer * 10^kappa. (It // will not always be exactly the same since DigitGenCounted only produces a // limited number of digits.) var kappa int kappa, digits, result = digitGenCounted(scaled_w, requested_digits, buffer) decimal_exponent = -mk + kappa return } // v must be > 0 and must not be Inf or NaN func Dtoa(v float64, mode Mode, requested_digits int, buffer []byte) (digits []byte, decimal_point int, result bool) { defer func() { if x := recover(); x != nil { if x == dcheckFailure { panic(fmt.Errorf("DCHECK assertion failed while formatting %s in mode %d", strconv.FormatFloat(v, 'e', 50, 64), mode)) } panic(x) } }() var decimal_exponent int startPos := len(buffer) switch mode { case ModeShortest: digits, decimal_exponent, result = grisu3(v, buffer) case ModePrecision: digits, decimal_exponent, result = grisu3Counted(v, requested_digits, buffer) } if result { decimal_point = len(digits) - startPos + decimal_exponent } else { digits = digits[:startPos] } return }