ai_old/goja/builtin_math.go
2024-09-20 16:50:35 +08:00

359 lines
11 KiB
Go

package goja
import (
"math"
"math/bits"
"sync"
)
func (r *Runtime) math_abs(call FunctionCall) Value {
return floatToValue(math.Abs(call.Argument(0).ToFloat()))
}
func (r *Runtime) math_acos(call FunctionCall) Value {
return floatToValue(math.Acos(call.Argument(0).ToFloat()))
}
func (r *Runtime) math_acosh(call FunctionCall) Value {
return floatToValue(math.Acosh(call.Argument(0).ToFloat()))
}
func (r *Runtime) math_asin(call FunctionCall) Value {
return floatToValue(math.Asin(call.Argument(0).ToFloat()))
}
func (r *Runtime) math_asinh(call FunctionCall) Value {
return floatToValue(math.Asinh(call.Argument(0).ToFloat()))
}
func (r *Runtime) math_atan(call FunctionCall) Value {
return floatToValue(math.Atan(call.Argument(0).ToFloat()))
}
func (r *Runtime) math_atanh(call FunctionCall) Value {
return floatToValue(math.Atanh(call.Argument(0).ToFloat()))
}
func (r *Runtime) math_atan2(call FunctionCall) Value {
y := call.Argument(0).ToFloat()
x := call.Argument(1).ToFloat()
return floatToValue(math.Atan2(y, x))
}
func (r *Runtime) math_cbrt(call FunctionCall) Value {
return floatToValue(math.Cbrt(call.Argument(0).ToFloat()))
}
func (r *Runtime) math_ceil(call FunctionCall) Value {
return floatToValue(math.Ceil(call.Argument(0).ToFloat()))
}
func (r *Runtime) math_clz32(call FunctionCall) Value {
return intToValue(int64(bits.LeadingZeros32(toUint32(call.Argument(0)))))
}
func (r *Runtime) math_cos(call FunctionCall) Value {
return floatToValue(math.Cos(call.Argument(0).ToFloat()))
}
func (r *Runtime) math_cosh(call FunctionCall) Value {
return floatToValue(math.Cosh(call.Argument(0).ToFloat()))
}
func (r *Runtime) math_exp(call FunctionCall) Value {
return floatToValue(math.Exp(call.Argument(0).ToFloat()))
}
func (r *Runtime) math_expm1(call FunctionCall) Value {
return floatToValue(math.Expm1(call.Argument(0).ToFloat()))
}
func (r *Runtime) math_floor(call FunctionCall) Value {
return floatToValue(math.Floor(call.Argument(0).ToFloat()))
}
func (r *Runtime) math_fround(call FunctionCall) Value {
return floatToValue(float64(float32(call.Argument(0).ToFloat())))
}
func (r *Runtime) math_hypot(call FunctionCall) Value {
var max float64
var hasNaN bool
absValues := make([]float64, 0, len(call.Arguments))
for _, v := range call.Arguments {
arg := nilSafe(v).ToFloat()
if math.IsNaN(arg) {
hasNaN = true
} else {
abs := math.Abs(arg)
if abs > max {
max = abs
}
absValues = append(absValues, abs)
}
}
if math.IsInf(max, 1) {
return _positiveInf
}
if hasNaN {
return _NaN
}
if max == 0 {
return _positiveZero
}
// Kahan summation to avoid rounding errors.
// Normalize the numbers to the largest one to avoid overflow.
var sum, compensation float64
for _, n := range absValues {
n /= max
summand := n*n - compensation
preliminary := sum + summand
compensation = (preliminary - sum) - summand
sum = preliminary
}
return floatToValue(math.Sqrt(sum) * max)
}
func (r *Runtime) math_imul(call FunctionCall) Value {
x := toUint32(call.Argument(0))
y := toUint32(call.Argument(1))
return intToValue(int64(int32(x * y)))
}
func (r *Runtime) math_log(call FunctionCall) Value {
return floatToValue(math.Log(call.Argument(0).ToFloat()))
}
func (r *Runtime) math_log1p(call FunctionCall) Value {
return floatToValue(math.Log1p(call.Argument(0).ToFloat()))
}
func (r *Runtime) math_log10(call FunctionCall) Value {
return floatToValue(math.Log10(call.Argument(0).ToFloat()))
}
func (r *Runtime) math_log2(call FunctionCall) Value {
return floatToValue(math.Log2(call.Argument(0).ToFloat()))
}
func (r *Runtime) math_max(call FunctionCall) Value {
result := math.Inf(-1)
args := call.Arguments
for i, arg := range args {
n := nilSafe(arg).ToFloat()
if math.IsNaN(n) {
args = args[i+1:]
goto NaNLoop
}
result = math.Max(result, n)
}
return floatToValue(result)
NaNLoop:
// All arguments still need to be coerced to number according to the specs.
for _, arg := range args {
nilSafe(arg).ToFloat()
}
return _NaN
}
func (r *Runtime) math_min(call FunctionCall) Value {
result := math.Inf(1)
args := call.Arguments
for i, arg := range args {
n := nilSafe(arg).ToFloat()
if math.IsNaN(n) {
args = args[i+1:]
goto NaNLoop
}
result = math.Min(result, n)
}
return floatToValue(result)
NaNLoop:
// All arguments still need to be coerced to number according to the specs.
for _, arg := range args {
nilSafe(arg).ToFloat()
}
return _NaN
}
func pow(x, y Value) Value {
if x, ok := x.(valueInt); ok {
if y, ok := y.(valueInt); ok && y >= 0 {
if y == 0 {
return intToValue(1)
}
if x == 0 {
return intToValue(0)
}
ip := ipow(int64(x), int64(y))
if ip != 0 {
return intToValue(ip)
}
}
}
xf := x.ToFloat()
yf := y.ToFloat()
if math.Abs(xf) == 1 && math.IsInf(yf, 0) {
return _NaN
}
if xf == 1 && math.IsNaN(yf) {
return _NaN
}
return floatToValue(math.Pow(xf, yf))
}
func (r *Runtime) math_pow(call FunctionCall) Value {
return pow(call.Argument(0), call.Argument(1))
}
func (r *Runtime) math_random(call FunctionCall) Value {
return floatToValue(r.rand())
}
func (r *Runtime) math_round(call FunctionCall) Value {
f := call.Argument(0).ToFloat()
if math.IsNaN(f) {
return _NaN
}
if f == 0 && math.Signbit(f) {
return _negativeZero
}
t := math.Trunc(f)
if f >= 0 {
if f-t >= 0.5 {
return floatToValue(t + 1)
}
} else {
if t-f > 0.5 {
return floatToValue(t - 1)
}
}
return floatToValue(t)
}
func (r *Runtime) math_sign(call FunctionCall) Value {
arg := call.Argument(0)
num := arg.ToFloat()
if math.IsNaN(num) || num == 0 { // this will match -0 too
return arg
}
if num > 0 {
return intToValue(1)
}
return intToValue(-1)
}
func (r *Runtime) math_sin(call FunctionCall) Value {
return floatToValue(math.Sin(call.Argument(0).ToFloat()))
}
func (r *Runtime) math_sinh(call FunctionCall) Value {
return floatToValue(math.Sinh(call.Argument(0).ToFloat()))
}
func (r *Runtime) math_sqrt(call FunctionCall) Value {
return floatToValue(math.Sqrt(call.Argument(0).ToFloat()))
}
func (r *Runtime) math_tan(call FunctionCall) Value {
return floatToValue(math.Tan(call.Argument(0).ToFloat()))
}
func (r *Runtime) math_tanh(call FunctionCall) Value {
return floatToValue(math.Tanh(call.Argument(0).ToFloat()))
}
func (r *Runtime) math_trunc(call FunctionCall) Value {
arg := call.Argument(0)
if i, ok := arg.(valueInt); ok {
return i
}
return floatToValue(math.Trunc(arg.ToFloat()))
}
func createMathTemplate() *objectTemplate {
t := newObjectTemplate()
t.protoFactory = func(r *Runtime) *Object {
return r.global.ObjectPrototype
}
t.putStr("E", func(r *Runtime) Value { return valueProp(valueFloat(math.E), false, false, false) })
t.putStr("LN10", func(r *Runtime) Value { return valueProp(valueFloat(math.Ln10), false, false, false) })
t.putStr("LN2", func(r *Runtime) Value { return valueProp(valueFloat(math.Ln2), false, false, false) })
t.putStr("LOG10E", func(r *Runtime) Value { return valueProp(valueFloat(math.Log10E), false, false, false) })
t.putStr("LOG2E", func(r *Runtime) Value { return valueProp(valueFloat(math.Log2E), false, false, false) })
t.putStr("PI", func(r *Runtime) Value { return valueProp(valueFloat(math.Pi), false, false, false) })
t.putStr("SQRT1_2", func(r *Runtime) Value { return valueProp(valueFloat(sqrt1_2), false, false, false) })
t.putStr("SQRT2", func(r *Runtime) Value { return valueProp(valueFloat(math.Sqrt2), false, false, false) })
t.putSym(SymToStringTag, func(r *Runtime) Value { return valueProp(asciiString(classMath), false, false, true) })
t.putStr("abs", func(r *Runtime) Value { return r.methodProp(r.math_abs, "abs", 1) })
t.putStr("acos", func(r *Runtime) Value { return r.methodProp(r.math_acos, "acos", 1) })
t.putStr("acosh", func(r *Runtime) Value { return r.methodProp(r.math_acosh, "acosh", 1) })
t.putStr("asin", func(r *Runtime) Value { return r.methodProp(r.math_asin, "asin", 1) })
t.putStr("asinh", func(r *Runtime) Value { return r.methodProp(r.math_asinh, "asinh", 1) })
t.putStr("atan", func(r *Runtime) Value { return r.methodProp(r.math_atan, "atan", 1) })
t.putStr("atanh", func(r *Runtime) Value { return r.methodProp(r.math_atanh, "atanh", 1) })
t.putStr("atan2", func(r *Runtime) Value { return r.methodProp(r.math_atan2, "atan2", 2) })
t.putStr("cbrt", func(r *Runtime) Value { return r.methodProp(r.math_cbrt, "cbrt", 1) })
t.putStr("ceil", func(r *Runtime) Value { return r.methodProp(r.math_ceil, "ceil", 1) })
t.putStr("clz32", func(r *Runtime) Value { return r.methodProp(r.math_clz32, "clz32", 1) })
t.putStr("cos", func(r *Runtime) Value { return r.methodProp(r.math_cos, "cos", 1) })
t.putStr("cosh", func(r *Runtime) Value { return r.methodProp(r.math_cosh, "cosh", 1) })
t.putStr("exp", func(r *Runtime) Value { return r.methodProp(r.math_exp, "exp", 1) })
t.putStr("expm1", func(r *Runtime) Value { return r.methodProp(r.math_expm1, "expm1", 1) })
t.putStr("floor", func(r *Runtime) Value { return r.methodProp(r.math_floor, "floor", 1) })
t.putStr("fround", func(r *Runtime) Value { return r.methodProp(r.math_fround, "fround", 1) })
t.putStr("hypot", func(r *Runtime) Value { return r.methodProp(r.math_hypot, "hypot", 2) })
t.putStr("imul", func(r *Runtime) Value { return r.methodProp(r.math_imul, "imul", 2) })
t.putStr("log", func(r *Runtime) Value { return r.methodProp(r.math_log, "log", 1) })
t.putStr("log1p", func(r *Runtime) Value { return r.methodProp(r.math_log1p, "log1p", 1) })
t.putStr("log10", func(r *Runtime) Value { return r.methodProp(r.math_log10, "log10", 1) })
t.putStr("log2", func(r *Runtime) Value { return r.methodProp(r.math_log2, "log2", 1) })
t.putStr("max", func(r *Runtime) Value { return r.methodProp(r.math_max, "max", 2) })
t.putStr("min", func(r *Runtime) Value { return r.methodProp(r.math_min, "min", 2) })
t.putStr("pow", func(r *Runtime) Value { return r.methodProp(r.math_pow, "pow", 2) })
t.putStr("random", func(r *Runtime) Value { return r.methodProp(r.math_random, "random", 0) })
t.putStr("round", func(r *Runtime) Value { return r.methodProp(r.math_round, "round", 1) })
t.putStr("sign", func(r *Runtime) Value { return r.methodProp(r.math_sign, "sign", 1) })
t.putStr("sin", func(r *Runtime) Value { return r.methodProp(r.math_sin, "sin", 1) })
t.putStr("sinh", func(r *Runtime) Value { return r.methodProp(r.math_sinh, "sinh", 1) })
t.putStr("sqrt", func(r *Runtime) Value { return r.methodProp(r.math_sqrt, "sqrt", 1) })
t.putStr("tan", func(r *Runtime) Value { return r.methodProp(r.math_tan, "tan", 1) })
t.putStr("tanh", func(r *Runtime) Value { return r.methodProp(r.math_tanh, "tanh", 1) })
t.putStr("trunc", func(r *Runtime) Value { return r.methodProp(r.math_trunc, "trunc", 1) })
return t
}
var mathTemplate *objectTemplate
var mathTemplateOnce sync.Once
func getMathTemplate() *objectTemplate {
mathTemplateOnce.Do(func() {
mathTemplate = createMathTemplate()
})
return mathTemplate
}
func (r *Runtime) getMath() *Object {
ret := r.global.Math
if ret == nil {
ret = &Object{runtime: r}
r.global.Math = ret
r.newTemplatedObject(getMathTemplate(), ret)
}
return ret
}