ai_old/goja/compiler_expr.go
Star 767d87ac3e update throw exception
add util.load and util.save
2024-09-24 13:34:32 +08:00

3614 lines
80 KiB
Go

package goja
import (
"math/big"
"apigo.cc/ai/ai/goja/ast"
"apigo.cc/ai/ai/goja/file"
"apigo.cc/ai/ai/goja/token"
"apigo.cc/ai/ai/goja/unistring"
)
type compiledExpr interface {
emitGetter(putOnStack bool)
emitSetter(valueExpr compiledExpr, putOnStack bool)
emitRef()
emitUnary(prepare, body func(), postfix, putOnStack bool)
deleteExpr() compiledExpr
constant() bool
addSrcMap()
}
type compiledExprOrRef interface {
compiledExpr
emitGetterOrRef()
}
type compiledCallExpr struct {
baseCompiledExpr
args []compiledExpr
callee compiledExpr
isVariadic bool
}
type compiledNewExpr struct {
compiledCallExpr
}
type compiledObjectLiteral struct {
baseCompiledExpr
expr *ast.ObjectLiteral
}
type compiledArrayLiteral struct {
baseCompiledExpr
expr *ast.ArrayLiteral
}
type compiledRegexpLiteral struct {
baseCompiledExpr
expr *ast.RegExpLiteral
}
type compiledLiteral struct {
baseCompiledExpr
val Value
}
type compiledTemplateLiteral struct {
baseCompiledExpr
tag compiledExpr
elements []*ast.TemplateElement
expressions []compiledExpr
}
type compiledAssignExpr struct {
baseCompiledExpr
left, right compiledExpr
operator token.Token
}
type compiledObjectAssignmentPattern struct {
baseCompiledExpr
expr *ast.ObjectPattern
}
type compiledArrayAssignmentPattern struct {
baseCompiledExpr
expr *ast.ArrayPattern
}
type deleteGlobalExpr struct {
baseCompiledExpr
name unistring.String
}
type deleteVarExpr struct {
baseCompiledExpr
name unistring.String
}
type deletePropExpr struct {
baseCompiledExpr
left compiledExpr
name unistring.String
}
type deleteElemExpr struct {
baseCompiledExpr
left, member compiledExpr
}
type constantExpr struct {
baseCompiledExpr
val Value
}
type baseCompiledExpr struct {
c *compiler
offset int
}
type compiledIdentifierExpr struct {
baseCompiledExpr
name unistring.String
}
type compiledAwaitExpression struct {
baseCompiledExpr
arg compiledExpr
}
type compiledYieldExpression struct {
baseCompiledExpr
arg compiledExpr
delegate bool
}
type funcType uint8
const (
funcNone funcType = iota
funcRegular
funcArrow
funcMethod
funcClsInit
funcCtor
funcDerivedCtor
)
type compiledFunctionLiteral struct {
baseCompiledExpr
name *ast.Identifier
parameterList *ast.ParameterList
body []ast.Statement
source string
declarationList []*ast.VariableDeclaration
lhsName unistring.String
strict *ast.StringLiteral
homeObjOffset uint32
typ funcType
isExpr bool
isAsync, isGenerator bool
}
type compiledBracketExpr struct {
baseCompiledExpr
left, member compiledExpr
}
type compiledThisExpr struct {
baseCompiledExpr
}
type compiledSuperExpr struct {
baseCompiledExpr
}
type compiledNewTarget struct {
baseCompiledExpr
}
type compiledSequenceExpr struct {
baseCompiledExpr
sequence []compiledExpr
}
type compiledUnaryExpr struct {
baseCompiledExpr
operand compiledExpr
operator token.Token
postfix bool
}
type compiledConditionalExpr struct {
baseCompiledExpr
test, consequent, alternate compiledExpr
}
type compiledLogicalOr struct {
baseCompiledExpr
left, right compiledExpr
}
type compiledCoalesce struct {
baseCompiledExpr
left, right compiledExpr
}
type compiledLogicalAnd struct {
baseCompiledExpr
left, right compiledExpr
}
type compiledBinaryExpr struct {
baseCompiledExpr
left, right compiledExpr
operator token.Token
}
type compiledEnumGetExpr struct {
baseCompiledExpr
}
type defaultDeleteExpr struct {
baseCompiledExpr
expr compiledExpr
}
type compiledSpreadCallArgument struct {
baseCompiledExpr
expr compiledExpr
}
type compiledOptionalChain struct {
baseCompiledExpr
expr compiledExpr
}
type compiledOptional struct {
baseCompiledExpr
expr compiledExpr
}
func (e *defaultDeleteExpr) emitGetter(putOnStack bool) {
e.expr.emitGetter(false)
if putOnStack {
e.c.emitLiteralValue(valueTrue)
}
}
func (c *compiler) compileExpression(v ast.Expression) compiledExpr {
// log.Printf("compileExpression: %T", v)
switch v := v.(type) {
case nil:
return nil
case *ast.AssignExpression:
return c.compileAssignExpression(v)
case *ast.NumberLiteral:
return c.compileNumberLiteral(v)
case *ast.StringLiteral:
return c.compileStringLiteral(v)
case *ast.TemplateLiteral:
return c.compileTemplateLiteral(v)
case *ast.BooleanLiteral:
return c.compileBooleanLiteral(v)
case *ast.NullLiteral:
r := &compiledLiteral{
val: _null,
}
r.init(c, v.Idx0())
return r
case *ast.Identifier:
return c.compileIdentifierExpression(v)
case *ast.CallExpression:
return c.compileCallExpression(v)
case *ast.ObjectLiteral:
return c.compileObjectLiteral(v)
case *ast.ArrayLiteral:
return c.compileArrayLiteral(v)
case *ast.RegExpLiteral:
return c.compileRegexpLiteral(v)
case *ast.BinaryExpression:
return c.compileBinaryExpression(v)
case *ast.UnaryExpression:
return c.compileUnaryExpression(v)
case *ast.ConditionalExpression:
return c.compileConditionalExpression(v)
case *ast.FunctionLiteral:
return c.compileFunctionLiteral(v, true)
case *ast.ArrowFunctionLiteral:
return c.compileArrowFunctionLiteral(v)
case *ast.ClassLiteral:
return c.compileClassLiteral(v, true)
case *ast.DotExpression:
return c.compileDotExpression(v)
case *ast.PrivateDotExpression:
return c.compilePrivateDotExpression(v)
case *ast.BracketExpression:
return c.compileBracketExpression(v)
case *ast.ThisExpression:
r := &compiledThisExpr{}
r.init(c, v.Idx0())
return r
case *ast.SuperExpression:
c.throwSyntaxError(int(v.Idx0())-1, "'super' keyword unexpected here")
panic("unreachable")
case *ast.SequenceExpression:
return c.compileSequenceExpression(v)
case *ast.NewExpression:
return c.compileNewExpression(v)
case *ast.MetaProperty:
return c.compileMetaProperty(v)
case *ast.ObjectPattern:
return c.compileObjectAssignmentPattern(v)
case *ast.ArrayPattern:
return c.compileArrayAssignmentPattern(v)
case *ast.OptionalChain:
r := &compiledOptionalChain{
expr: c.compileExpression(v.Expression),
}
r.init(c, v.Idx0())
return r
case *ast.Optional:
r := &compiledOptional{
expr: c.compileExpression(v.Expression),
}
r.init(c, v.Idx0())
return r
case *ast.AwaitExpression:
r := &compiledAwaitExpression{
arg: c.compileExpression(v.Argument),
}
r.init(c, v.Await)
return r
case *ast.YieldExpression:
r := &compiledYieldExpression{
arg: c.compileExpression(v.Argument),
delegate: v.Delegate,
}
r.init(c, v.Yield)
return r
default:
c.assert(false, int(v.Idx0())-1, "Unknown expression type: %T", v)
panic("unreachable")
}
}
func (e *baseCompiledExpr) constant() bool {
return false
}
func (e *baseCompiledExpr) init(c *compiler, idx file.Idx) {
e.c = c
e.offset = int(idx) - 1
}
func (e *baseCompiledExpr) emitSetter(compiledExpr, bool) {
e.c.throwSyntaxError(e.offset, "Not a valid left-value expression")
}
func (e *baseCompiledExpr) emitRef() {
e.c.assert(false, e.offset, "Cannot emit reference for this type of expression")
}
func (e *baseCompiledExpr) deleteExpr() compiledExpr {
r := &constantExpr{
val: valueTrue,
}
r.init(e.c, file.Idx(e.offset+1))
return r
}
func (e *baseCompiledExpr) emitUnary(func(), func(), bool, bool) {
e.c.throwSyntaxError(e.offset, "Not a valid left-value expression")
}
func (e *baseCompiledExpr) addSrcMap() {
if e.offset >= 0 {
e.c.p.addSrcMap(e.offset)
}
}
func (e *constantExpr) emitGetter(putOnStack bool) {
if putOnStack {
e.addSrcMap()
e.c.emitLiteralValue(e.val)
}
}
func (e *compiledIdentifierExpr) emitGetter(putOnStack bool) {
e.addSrcMap()
if b, noDynamics := e.c.scope.lookupName(e.name); noDynamics {
e.c.assert(b != nil, e.offset, "No dynamics and not found")
if putOnStack {
b.emitGet()
} else {
b.emitGetP()
}
} else {
if b != nil {
b.emitGetVar(false)
} else {
e.c.emit(loadDynamic(e.name))
}
if !putOnStack {
e.c.emit(pop)
}
}
}
func (e *compiledIdentifierExpr) emitGetterOrRef() {
e.addSrcMap()
if b, noDynamics := e.c.scope.lookupName(e.name); noDynamics {
e.c.assert(b != nil, e.offset, "No dynamics and not found")
b.emitGet()
} else {
if b != nil {
b.emitGetVar(false)
} else {
e.c.emit(loadDynamicRef(e.name))
}
}
}
func (e *compiledIdentifierExpr) emitGetterAndCallee() {
e.addSrcMap()
if b, noDynamics := e.c.scope.lookupName(e.name); noDynamics {
e.c.assert(b != nil, e.offset, "No dynamics and not found")
e.c.emit(loadUndef)
b.emitGet()
} else {
if b != nil {
b.emitGetVar(true)
} else {
e.c.emit(loadDynamicCallee(e.name))
}
}
}
func (e *compiledIdentifierExpr) emitVarSetter1(putOnStack bool, emitRight func(isRef bool)) {
e.addSrcMap()
c := e.c
if b, noDynamics := c.scope.lookupName(e.name); noDynamics {
if c.scope.strict {
c.checkIdentifierLName(e.name, e.offset)
}
emitRight(false)
if b != nil {
if putOnStack {
b.emitSet()
} else {
b.emitSetP()
}
} else {
if c.scope.strict {
c.emit(setGlobalStrict(e.name))
} else {
c.emit(setGlobal(e.name))
}
if !putOnStack {
c.emit(pop)
}
}
} else {
c.emitVarRef(e.name, e.offset, b)
emitRight(true)
if putOnStack {
c.emit(putValue)
} else {
c.emit(putValueP)
}
}
}
func (e *compiledIdentifierExpr) emitVarSetter(valueExpr compiledExpr, putOnStack bool) {
e.emitVarSetter1(putOnStack, func(bool) {
e.c.emitNamedOrConst(valueExpr, e.name)
})
}
func (c *compiler) emitVarRef(name unistring.String, offset int, b *binding) {
if c.scope.strict {
c.checkIdentifierLName(name, offset)
}
if b != nil {
b.emitResolveVar(c.scope.strict)
} else {
if c.scope.strict {
c.emit(resolveVar1Strict(name))
} else {
c.emit(resolveVar1(name))
}
}
}
func (e *compiledIdentifierExpr) emitRef() {
b, _ := e.c.scope.lookupName(e.name)
e.c.emitVarRef(e.name, e.offset, b)
}
func (e *compiledIdentifierExpr) emitSetter(valueExpr compiledExpr, putOnStack bool) {
e.emitVarSetter(valueExpr, putOnStack)
}
func (e *compiledIdentifierExpr) emitUnary(prepare, body func(), postfix, putOnStack bool) {
if putOnStack {
e.emitVarSetter1(true, func(isRef bool) {
e.c.emit(loadUndef)
if isRef {
e.c.emit(getValue)
} else {
e.emitGetter(true)
}
if prepare != nil {
prepare()
}
if !postfix {
body()
}
e.c.emit(rdupN(1))
if postfix {
body()
}
})
e.c.emit(pop)
} else {
e.emitVarSetter1(false, func(isRef bool) {
if isRef {
e.c.emit(getValue)
} else {
e.emitGetter(true)
}
body()
})
}
}
func (e *compiledIdentifierExpr) deleteExpr() compiledExpr {
if e.c.scope.strict {
e.c.throwSyntaxError(e.offset, "Delete of an unqualified identifier in strict mode")
panic("Unreachable")
}
if b, noDynamics := e.c.scope.lookupName(e.name); noDynamics {
if b == nil {
r := &deleteGlobalExpr{
name: e.name,
}
r.init(e.c, file.Idx(0))
return r
}
} else {
if b == nil {
r := &deleteVarExpr{
name: e.name,
}
r.init(e.c, file.Idx(e.offset+1))
return r
}
}
r := &compiledLiteral{
val: valueFalse,
}
r.init(e.c, file.Idx(e.offset+1))
return r
}
type compiledSuperDotExpr struct {
baseCompiledExpr
name unistring.String
}
func (e *compiledSuperDotExpr) emitGetter(putOnStack bool) {
e.c.emitLoadThis()
e.c.emit(loadSuper)
e.addSrcMap()
e.c.emit(getPropRecv(e.name))
if !putOnStack {
e.c.emit(pop)
}
}
func (e *compiledSuperDotExpr) emitSetter(valueExpr compiledExpr, putOnStack bool) {
e.c.emitLoadThis()
e.c.emit(loadSuper)
valueExpr.emitGetter(true)
e.addSrcMap()
if putOnStack {
if e.c.scope.strict {
e.c.emit(setPropRecvStrict(e.name))
} else {
e.c.emit(setPropRecv(e.name))
}
} else {
if e.c.scope.strict {
e.c.emit(setPropRecvStrictP(e.name))
} else {
e.c.emit(setPropRecvP(e.name))
}
}
}
func (e *compiledSuperDotExpr) emitUnary(prepare, body func(), postfix, putOnStack bool) {
if !putOnStack {
e.c.emitLoadThis()
e.c.emit(loadSuper, dupLast(2), getPropRecv(e.name))
body()
e.addSrcMap()
if e.c.scope.strict {
e.c.emit(setPropRecvStrictP(e.name))
} else {
e.c.emit(setPropRecvP(e.name))
}
} else {
if !postfix {
e.c.emitLoadThis()
e.c.emit(loadSuper, dupLast(2), getPropRecv(e.name))
if prepare != nil {
prepare()
}
body()
e.addSrcMap()
if e.c.scope.strict {
e.c.emit(setPropRecvStrict(e.name))
} else {
e.c.emit(setPropRecv(e.name))
}
} else {
e.c.emit(loadUndef)
e.c.emitLoadThis()
e.c.emit(loadSuper, dupLast(2), getPropRecv(e.name))
if prepare != nil {
prepare()
}
e.c.emit(rdupN(3))
body()
e.addSrcMap()
if e.c.scope.strict {
e.c.emit(setPropRecvStrictP(e.name))
} else {
e.c.emit(setPropRecvP(e.name))
}
}
}
}
func (e *compiledSuperDotExpr) emitRef() {
e.c.emitLoadThis()
e.c.emit(loadSuper)
if e.c.scope.strict {
e.c.emit(getPropRefRecvStrict(e.name))
} else {
e.c.emit(getPropRefRecv(e.name))
}
}
func (e *compiledSuperDotExpr) deleteExpr() compiledExpr {
return e.c.superDeleteError(e.offset)
}
type compiledDotExpr struct {
baseCompiledExpr
left compiledExpr
name unistring.String
}
type compiledPrivateDotExpr struct {
baseCompiledExpr
left compiledExpr
name unistring.String
}
func (c *compiler) checkSuperBase(idx file.Idx) {
if s := c.scope.nearestThis(); s != nil {
switch s.funcType {
case funcMethod, funcClsInit, funcCtor, funcDerivedCtor:
return
}
}
c.throwSyntaxError(int(idx)-1, "'super' keyword unexpected here")
panic("unreachable")
}
func (c *compiler) compileDotExpression(v *ast.DotExpression) compiledExpr {
if sup, ok := v.Left.(*ast.SuperExpression); ok {
c.checkSuperBase(sup.Idx)
r := &compiledSuperDotExpr{
name: v.Identifier.Name,
}
r.init(c, v.Identifier.Idx)
return r
}
r := &compiledDotExpr{
left: c.compileExpression(v.Left),
name: v.Identifier.Name,
}
r.init(c, v.Identifier.Idx)
return r
}
func (c *compiler) compilePrivateDotExpression(v *ast.PrivateDotExpression) compiledExpr {
r := &compiledPrivateDotExpr{
left: c.compileExpression(v.Left),
name: v.Identifier.Name,
}
r.init(c, v.Identifier.Idx)
return r
}
func (e *compiledPrivateDotExpr) _emitGetter(rn *resolvedPrivateName, id *privateId) {
if rn != nil {
e.c.emit((*getPrivatePropRes)(rn))
} else {
e.c.emit((*getPrivatePropId)(id))
}
}
func (e *compiledPrivateDotExpr) _emitSetter(rn *resolvedPrivateName, id *privateId) {
if rn != nil {
e.c.emit((*setPrivatePropRes)(rn))
} else {
e.c.emit((*setPrivatePropId)(id))
}
}
func (e *compiledPrivateDotExpr) _emitSetterP(rn *resolvedPrivateName, id *privateId) {
if rn != nil {
e.c.emit((*setPrivatePropResP)(rn))
} else {
e.c.emit((*setPrivatePropIdP)(id))
}
}
func (e *compiledPrivateDotExpr) emitGetter(putOnStack bool) {
e.left.emitGetter(true)
e.addSrcMap()
rn, id := e.c.resolvePrivateName(e.name, e.offset)
e._emitGetter(rn, id)
if !putOnStack {
e.c.emit(pop)
}
}
func (e *compiledPrivateDotExpr) emitSetter(v compiledExpr, putOnStack bool) {
rn, id := e.c.resolvePrivateName(e.name, e.offset)
e.left.emitGetter(true)
v.emitGetter(true)
e.addSrcMap()
if putOnStack {
e._emitSetter(rn, id)
} else {
e._emitSetterP(rn, id)
}
}
func (e *compiledPrivateDotExpr) emitUnary(prepare, body func(), postfix, putOnStack bool) {
rn, id := e.c.resolvePrivateName(e.name, e.offset)
if !putOnStack {
e.left.emitGetter(true)
e.c.emit(dup)
e._emitGetter(rn, id)
body()
e.addSrcMap()
e._emitSetterP(rn, id)
} else {
if !postfix {
e.left.emitGetter(true)
e.c.emit(dup)
e._emitGetter(rn, id)
if prepare != nil {
prepare()
}
body()
e.addSrcMap()
e._emitSetter(rn, id)
} else {
e.c.emit(loadUndef)
e.left.emitGetter(true)
e.c.emit(dup)
e._emitGetter(rn, id)
if prepare != nil {
prepare()
}
e.c.emit(rdupN(2))
body()
e.addSrcMap()
e._emitSetterP(rn, id)
}
}
}
func (e *compiledPrivateDotExpr) deleteExpr() compiledExpr {
e.c.throwSyntaxError(e.offset, "Private fields can not be deleted")
panic("unreachable")
}
func (e *compiledPrivateDotExpr) emitRef() {
e.left.emitGetter(true)
rn, id := e.c.resolvePrivateName(e.name, e.offset)
if rn != nil {
e.c.emit((*getPrivateRefRes)(rn))
} else {
e.c.emit((*getPrivateRefId)(id))
}
}
type compiledSuperBracketExpr struct {
baseCompiledExpr
member compiledExpr
}
func (e *compiledSuperBracketExpr) emitGetter(putOnStack bool) {
e.c.emitLoadThis()
e.member.emitGetter(true)
e.c.emit(loadSuper)
e.addSrcMap()
e.c.emit(getElemRecv)
if !putOnStack {
e.c.emit(pop)
}
}
func (e *compiledSuperBracketExpr) emitSetter(valueExpr compiledExpr, putOnStack bool) {
e.c.emitLoadThis()
e.member.emitGetter(true)
e.c.emit(loadSuper)
valueExpr.emitGetter(true)
e.addSrcMap()
if putOnStack {
if e.c.scope.strict {
e.c.emit(setElemRecvStrict)
} else {
e.c.emit(setElemRecv)
}
} else {
if e.c.scope.strict {
e.c.emit(setElemRecvStrictP)
} else {
e.c.emit(setElemRecvP)
}
}
}
func (e *compiledSuperBracketExpr) emitUnary(prepare, body func(), postfix, putOnStack bool) {
if !putOnStack {
e.c.emitLoadThis()
e.member.emitGetter(true)
e.c.emit(loadSuper, dupLast(3), getElemRecv)
body()
e.addSrcMap()
if e.c.scope.strict {
e.c.emit(setElemRecvStrictP)
} else {
e.c.emit(setElemRecvP)
}
} else {
if !postfix {
e.c.emitLoadThis()
e.member.emitGetter(true)
e.c.emit(loadSuper, dupLast(3), getElemRecv)
if prepare != nil {
prepare()
}
body()
e.addSrcMap()
if e.c.scope.strict {
e.c.emit(setElemRecvStrict)
} else {
e.c.emit(setElemRecv)
}
} else {
e.c.emit(loadUndef)
e.c.emitLoadThis()
e.member.emitGetter(true)
e.c.emit(loadSuper, dupLast(3), getElemRecv)
if prepare != nil {
prepare()
}
e.c.emit(rdupN(4))
body()
e.addSrcMap()
if e.c.scope.strict {
e.c.emit(setElemRecvStrictP)
} else {
e.c.emit(setElemRecvP)
}
}
}
}
func (e *compiledSuperBracketExpr) emitRef() {
e.c.emitLoadThis()
e.member.emitGetter(true)
e.c.emit(loadSuper)
if e.c.scope.strict {
e.c.emit(getElemRefRecvStrict)
} else {
e.c.emit(getElemRefRecv)
}
}
func (c *compiler) superDeleteError(offset int) compiledExpr {
return c.compileEmitterExpr(func() {
c.emit(throwConst{referenceError("Unsupported reference to 'super'")})
}, file.Idx(offset+1))
}
func (e *compiledSuperBracketExpr) deleteExpr() compiledExpr {
return e.c.superDeleteError(e.offset)
}
func (c *compiler) checkConstantString(expr compiledExpr) (unistring.String, bool) {
if expr.constant() {
if val, ex := c.evalConst(expr); ex == nil {
if s, ok := val.(String); ok {
return s.string(), true
}
}
}
return "", false
}
func (c *compiler) compileBracketExpression(v *ast.BracketExpression) compiledExpr {
if sup, ok := v.Left.(*ast.SuperExpression); ok {
c.checkSuperBase(sup.Idx)
member := c.compileExpression(v.Member)
if name, ok := c.checkConstantString(member); ok {
r := &compiledSuperDotExpr{
name: name,
}
r.init(c, v.LeftBracket)
return r
}
r := &compiledSuperBracketExpr{
member: member,
}
r.init(c, v.LeftBracket)
return r
}
left := c.compileExpression(v.Left)
member := c.compileExpression(v.Member)
if name, ok := c.checkConstantString(member); ok {
r := &compiledDotExpr{
left: left,
name: name,
}
r.init(c, v.LeftBracket)
return r
}
r := &compiledBracketExpr{
left: left,
member: member,
}
r.init(c, v.LeftBracket)
return r
}
func (e *compiledDotExpr) emitGetter(putOnStack bool) {
e.left.emitGetter(true)
e.addSrcMap()
e.c.emit(getProp(e.name))
if !putOnStack {
e.c.emit(pop)
}
}
func (e *compiledDotExpr) emitRef() {
e.left.emitGetter(true)
if e.c.scope.strict {
e.c.emit(getPropRefStrict(e.name))
} else {
e.c.emit(getPropRef(e.name))
}
}
func (e *compiledDotExpr) emitSetter(valueExpr compiledExpr, putOnStack bool) {
e.left.emitGetter(true)
valueExpr.emitGetter(true)
e.addSrcMap()
if e.c.scope.strict {
if putOnStack {
e.c.emit(setPropStrict(e.name))
} else {
e.c.emit(setPropStrictP(e.name))
}
} else {
if putOnStack {
e.c.emit(setProp(e.name))
} else {
e.c.emit(setPropP(e.name))
}
}
}
func (e *compiledDotExpr) emitUnary(prepare, body func(), postfix, putOnStack bool) {
if !putOnStack {
e.left.emitGetter(true)
e.c.emit(dup)
e.c.emit(getProp(e.name))
body()
e.addSrcMap()
if e.c.scope.strict {
e.c.emit(setPropStrictP(e.name))
} else {
e.c.emit(setPropP(e.name))
}
} else {
if !postfix {
e.left.emitGetter(true)
e.c.emit(dup)
e.c.emit(getProp(e.name))
if prepare != nil {
prepare()
}
body()
e.addSrcMap()
if e.c.scope.strict {
e.c.emit(setPropStrict(e.name))
} else {
e.c.emit(setProp(e.name))
}
} else {
e.c.emit(loadUndef)
e.left.emitGetter(true)
e.c.emit(dup)
e.c.emit(getProp(e.name))
if prepare != nil {
prepare()
}
e.c.emit(rdupN(2))
body()
e.addSrcMap()
if e.c.scope.strict {
e.c.emit(setPropStrictP(e.name))
} else {
e.c.emit(setPropP(e.name))
}
}
}
}
func (e *compiledDotExpr) deleteExpr() compiledExpr {
r := &deletePropExpr{
left: e.left,
name: e.name,
}
r.init(e.c, file.Idx(e.offset)+1)
return r
}
func (e *compiledBracketExpr) emitGetter(putOnStack bool) {
e.left.emitGetter(true)
e.member.emitGetter(true)
e.addSrcMap()
e.c.emit(getElem)
if !putOnStack {
e.c.emit(pop)
}
}
func (e *compiledBracketExpr) emitRef() {
e.left.emitGetter(true)
e.member.emitGetter(true)
if e.c.scope.strict {
e.c.emit(getElemRefStrict)
} else {
e.c.emit(getElemRef)
}
}
func (e *compiledBracketExpr) emitSetter(valueExpr compiledExpr, putOnStack bool) {
e.left.emitGetter(true)
e.member.emitGetter(true)
valueExpr.emitGetter(true)
e.addSrcMap()
if e.c.scope.strict {
if putOnStack {
e.c.emit(setElemStrict)
} else {
e.c.emit(setElemStrictP)
}
} else {
if putOnStack {
e.c.emit(setElem)
} else {
e.c.emit(setElemP)
}
}
}
func (e *compiledBracketExpr) emitUnary(prepare, body func(), postfix, putOnStack bool) {
if !putOnStack {
e.left.emitGetter(true)
e.member.emitGetter(true)
e.c.emit(dupLast(2), getElem)
body()
e.addSrcMap()
if e.c.scope.strict {
e.c.emit(setElemStrict, pop)
} else {
e.c.emit(setElem, pop)
}
} else {
if !postfix {
e.left.emitGetter(true)
e.member.emitGetter(true)
e.c.emit(dupLast(2), getElem)
if prepare != nil {
prepare()
}
body()
e.addSrcMap()
if e.c.scope.strict {
e.c.emit(setElemStrict)
} else {
e.c.emit(setElem)
}
} else {
e.c.emit(loadUndef)
e.left.emitGetter(true)
e.member.emitGetter(true)
e.c.emit(dupLast(2), getElem)
if prepare != nil {
prepare()
}
e.c.emit(rdupN(3))
body()
e.addSrcMap()
if e.c.scope.strict {
e.c.emit(setElemStrict, pop)
} else {
e.c.emit(setElem, pop)
}
}
}
}
func (e *compiledBracketExpr) deleteExpr() compiledExpr {
r := &deleteElemExpr{
left: e.left,
member: e.member,
}
r.init(e.c, file.Idx(e.offset)+1)
return r
}
func (e *deleteElemExpr) emitGetter(putOnStack bool) {
e.left.emitGetter(true)
e.member.emitGetter(true)
e.addSrcMap()
if e.c.scope.strict {
e.c.emit(deleteElemStrict)
} else {
e.c.emit(deleteElem)
}
if !putOnStack {
e.c.emit(pop)
}
}
func (e *deletePropExpr) emitGetter(putOnStack bool) {
e.left.emitGetter(true)
e.addSrcMap()
if e.c.scope.strict {
e.c.emit(deletePropStrict(e.name))
} else {
e.c.emit(deleteProp(e.name))
}
if !putOnStack {
e.c.emit(pop)
}
}
func (e *deleteVarExpr) emitGetter(putOnStack bool) {
/*if e.c.scope.strict {
e.c.throwSyntaxError(e.offset, "Delete of an unqualified identifier in strict mode")
return
}*/
e.c.emit(deleteVar(e.name))
if !putOnStack {
e.c.emit(pop)
}
}
func (e *deleteGlobalExpr) emitGetter(putOnStack bool) {
/*if e.c.scope.strict {
e.c.throwSyntaxError(e.offset, "Delete of an unqualified identifier in strict mode")
return
}*/
e.c.emit(deleteGlobal(e.name))
if !putOnStack {
e.c.emit(pop)
}
}
func (e *compiledAssignExpr) emitGetter(putOnStack bool) {
switch e.operator {
case token.ASSIGN:
e.left.emitSetter(e.right, putOnStack)
case token.PLUS:
e.left.emitUnary(nil, func() {
e.right.emitGetter(true)
e.c.emit(add)
}, false, putOnStack)
case token.MINUS:
e.left.emitUnary(nil, func() {
e.right.emitGetter(true)
e.c.emit(sub)
}, false, putOnStack)
case token.MULTIPLY:
e.left.emitUnary(nil, func() {
e.right.emitGetter(true)
e.c.emit(mul)
}, false, putOnStack)
case token.EXPONENT:
e.left.emitUnary(nil, func() {
e.right.emitGetter(true)
e.c.emit(exp)
}, false, putOnStack)
case token.SLASH:
e.left.emitUnary(nil, func() {
e.right.emitGetter(true)
e.c.emit(div)
}, false, putOnStack)
case token.REMAINDER:
e.left.emitUnary(nil, func() {
e.right.emitGetter(true)
e.c.emit(mod)
}, false, putOnStack)
case token.OR:
e.left.emitUnary(nil, func() {
e.right.emitGetter(true)
e.c.emit(or)
}, false, putOnStack)
case token.AND:
e.left.emitUnary(nil, func() {
e.right.emitGetter(true)
e.c.emit(and)
}, false, putOnStack)
case token.EXCLUSIVE_OR:
e.left.emitUnary(nil, func() {
e.right.emitGetter(true)
e.c.emit(xor)
}, false, putOnStack)
case token.SHIFT_LEFT:
e.left.emitUnary(nil, func() {
e.right.emitGetter(true)
e.c.emit(sal)
}, false, putOnStack)
case token.SHIFT_RIGHT:
e.left.emitUnary(nil, func() {
e.right.emitGetter(true)
e.c.emit(sar)
}, false, putOnStack)
case token.UNSIGNED_SHIFT_RIGHT:
e.left.emitUnary(nil, func() {
e.right.emitGetter(true)
e.c.emit(shr)
}, false, putOnStack)
default:
e.c.assert(false, e.offset, "Unknown assign operator: %s", e.operator.String())
panic("unreachable")
}
}
func (e *compiledLiteral) emitGetter(putOnStack bool) {
if putOnStack {
e.c.emitLiteralValue(e.val)
}
}
func (e *compiledLiteral) constant() bool {
return true
}
func (e *compiledTemplateLiteral) emitGetter(putOnStack bool) {
if e.tag == nil {
if len(e.elements) == 0 {
e.c.emitLiteralString(stringEmpty)
} else {
tail := e.elements[len(e.elements)-1].Parsed
if len(e.elements) == 1 {
e.c.emitLiteralString(stringValueFromRaw(tail))
} else {
stringCount := 0
if head := e.elements[0].Parsed; head != "" {
e.c.emitLiteralString(stringValueFromRaw(head))
stringCount++
}
e.expressions[0].emitGetter(true)
e.c.emit(_toString{})
stringCount++
for i := 1; i < len(e.elements)-1; i++ {
if elt := e.elements[i].Parsed; elt != "" {
e.c.emitLiteralString(stringValueFromRaw(elt))
stringCount++
}
e.expressions[i].emitGetter(true)
e.c.emit(_toString{})
stringCount++
}
if tail != "" {
e.c.emitLiteralString(stringValueFromRaw(tail))
stringCount++
}
e.c.emit(concatStrings(stringCount))
}
}
} else {
cooked := make([]Value, len(e.elements))
raw := make([]Value, len(e.elements))
for i, elt := range e.elements {
raw[i] = &valueProperty{
enumerable: true,
value: newStringValue(elt.Literal),
}
var cookedVal Value
if elt.Valid {
cookedVal = stringValueFromRaw(elt.Parsed)
} else {
cookedVal = _undefined
}
cooked[i] = &valueProperty{
enumerable: true,
value: cookedVal,
}
}
e.c.emitCallee(e.tag)
e.c.emit(&getTaggedTmplObject{
raw: raw,
cooked: cooked,
})
for _, expr := range e.expressions {
expr.emitGetter(true)
}
e.c.emit(call(len(e.expressions) + 1))
}
if !putOnStack {
e.c.emit(pop)
}
}
func (c *compiler) compileParameterBindingIdentifier(name unistring.String, offset int) (*binding, bool) {
if c.scope.strict {
c.checkIdentifierName(name, offset)
c.checkIdentifierLName(name, offset)
}
return c.scope.bindNameShadow(name)
}
func (c *compiler) compileParameterPatternIdBinding(name unistring.String, offset int) {
if _, unique := c.compileParameterBindingIdentifier(name, offset); !unique {
c.throwSyntaxError(offset, "Duplicate parameter name not allowed in this context")
}
}
func (c *compiler) compileParameterPatternBinding(item ast.Expression) {
c.createBindings(item, c.compileParameterPatternIdBinding)
}
func (c *compiler) newCode(length, minCap int) (buf []instruction) {
if c.codeScratchpad != nil {
buf = c.codeScratchpad
c.codeScratchpad = nil
}
if cap(buf) < minCap {
buf = make([]instruction, length, minCap)
} else {
buf = buf[:length]
}
return
}
func (e *compiledFunctionLiteral) compile() (prg *Program, name unistring.String, length int, strict bool) {
e.c.assert(e.typ != funcNone, e.offset, "compiledFunctionLiteral.typ is not set")
savedPrg := e.c.p
preambleLen := 8 // enter, boxThis, loadStack(0), initThis, createArgs, set, loadCallee, init
e.c.p = &Program{
src: e.c.p.src,
code: e.c.newCode(preambleLen, 16),
srcMap: []srcMapItem{{srcPos: e.offset}},
}
e.c.newScope()
s := e.c.scope
s.funcType = e.typ
if e.name != nil {
name = e.name.Name
} else {
name = e.lhsName
}
if name != "" {
e.c.p.funcName = name
}
savedBlock := e.c.block
defer func() {
e.c.block = savedBlock
}()
e.c.block = &block{
typ: blockScope,
}
if !s.strict {
s.strict = e.strict != nil
}
hasPatterns := false
hasInits := false
firstDupIdx := -1
if e.parameterList.Rest != nil {
hasPatterns = true // strictly speaking not, but we need to activate all the checks
}
// First, make sure that the first bindings correspond to the formal parameters
for _, item := range e.parameterList.List {
switch tgt := item.Target.(type) {
case *ast.Identifier:
offset := int(tgt.Idx) - 1
b, unique := e.c.compileParameterBindingIdentifier(tgt.Name, offset)
if !unique {
firstDupIdx = offset
}
b.isArg = true
case ast.Pattern:
b := s.addBinding(int(item.Idx0()) - 1)
b.isArg = true
hasPatterns = true
default:
e.c.throwSyntaxError(int(item.Idx0())-1, "Unsupported BindingElement type: %T", item)
return
}
if item.Initializer != nil {
hasInits = true
}
if firstDupIdx >= 0 && (hasPatterns || hasInits || s.strict || e.typ == funcArrow || e.typ == funcMethod) {
e.c.throwSyntaxError(firstDupIdx, "Duplicate parameter name not allowed in this context")
return
}
if (hasPatterns || hasInits) && e.strict != nil {
e.c.throwSyntaxError(int(e.strict.Idx)-1, "Illegal 'use strict' directive in function with non-simple parameter list")
return
}
if !hasInits {
length++
}
}
var thisBinding *binding
if e.typ != funcArrow {
thisBinding = s.createThisBinding()
}
// create pattern bindings
if hasPatterns {
for _, item := range e.parameterList.List {
switch tgt := item.Target.(type) {
case *ast.Identifier:
// we already created those in the previous loop, skipping
default:
e.c.compileParameterPatternBinding(tgt)
}
}
if rest := e.parameterList.Rest; rest != nil {
e.c.compileParameterPatternBinding(rest)
}
}
paramsCount := len(e.parameterList.List)
s.numArgs = paramsCount
body := e.body
funcs := e.c.extractFunctions(body)
var calleeBinding *binding
emitArgsRestMark := -1
firstForwardRef := -1
enterFunc2Mark := -1
if hasPatterns || hasInits {
if e.isExpr && e.name != nil {
if b, created := s.bindNameLexical(e.name.Name, false, 0); created {
b.isConst = true
calleeBinding = b
}
}
for i, item := range e.parameterList.List {
if pattern, ok := item.Target.(ast.Pattern); ok {
i := i
e.c.compilePatternInitExpr(func() {
if firstForwardRef == -1 {
s.bindings[i].emitGet()
} else {
e.c.emit(loadStackLex(-i - 1))
}
}, item.Initializer, item.Target.Idx0()).emitGetter(true)
e.c.emitPattern(pattern, func(target, init compiledExpr) {
e.c.emitPatternLexicalAssign(target, init)
}, false)
} else if item.Initializer != nil {
markGet := len(e.c.p.code)
e.c.emit(nil)
mark := len(e.c.p.code)
e.c.emit(nil)
e.c.emitExpr(e.c.compileExpression(item.Initializer), true)
if firstForwardRef == -1 && (s.isDynamic() || s.bindings[i].useCount() > 0) {
firstForwardRef = i
}
if firstForwardRef == -1 {
s.bindings[i].emitGetAt(markGet)
} else {
e.c.p.code[markGet] = loadStackLex(-i - 1)
}
s.bindings[i].emitInitP()
e.c.p.code[mark] = jdefP(len(e.c.p.code) - mark)
} else {
if firstForwardRef == -1 && s.bindings[i].useCount() > 0 {
firstForwardRef = i
}
if firstForwardRef != -1 {
e.c.emit(loadStackLex(-i - 1))
s.bindings[i].emitInitP()
}
}
}
if rest := e.parameterList.Rest; rest != nil {
e.c.emitAssign(rest, e.c.compileEmitterExpr(
func() {
emitArgsRestMark = len(e.c.p.code)
e.c.emit(createArgsRestStack(paramsCount))
}, rest.Idx0()),
func(target, init compiledExpr) {
e.c.emitPatternLexicalAssign(target, init)
})
}
if firstForwardRef != -1 {
for _, b := range s.bindings {
b.inStash = true
}
s.argsInStash = true
s.needStash = true
}
e.c.newBlockScope()
varScope := e.c.scope
varScope.variable = true
enterFunc2Mark = len(e.c.p.code)
e.c.emit(nil)
e.c.compileDeclList(e.declarationList, false)
e.c.createFunctionBindings(funcs)
e.c.compileLexicalDeclarationsFuncBody(body, calleeBinding)
for _, b := range varScope.bindings {
if b.isVar {
if parentBinding := s.boundNames[b.name]; parentBinding != nil && parentBinding != calleeBinding {
parentBinding.emitGet()
b.emitSetP()
}
}
}
} else {
// To avoid triggering variable conflict when binding from non-strict direct eval().
// Parameters are supposed to be in a parent scope, hence no conflict.
for _, b := range s.bindings[:paramsCount] {
b.isVar = true
}
e.c.compileDeclList(e.declarationList, true)
e.c.createFunctionBindings(funcs)
e.c.compileLexicalDeclarations(body, true)
if e.isExpr && e.name != nil {
if b, created := s.bindNameLexical(e.name.Name, false, 0); created {
b.isConst = true
calleeBinding = b
}
}
if calleeBinding != nil {
e.c.emit(loadCallee)
calleeBinding.emitInitP()
}
}
e.c.compileFunctions(funcs)
if e.isGenerator {
e.c.emit(yieldEmpty)
}
e.c.compileStatements(body, false)
var last ast.Statement
if l := len(body); l > 0 {
last = body[l-1]
}
if _, ok := last.(*ast.ReturnStatement); !ok {
if e.typ == funcDerivedCtor {
e.c.emit(loadUndef)
thisBinding.markAccessPoint()
e.c.emit(ret)
} else {
e.c.emit(loadUndef, ret)
}
}
delta := 0
code := e.c.p.code
if s.isDynamic() && !s.argsInStash {
s.moveArgsToStash()
}
if s.argsNeeded || s.isDynamic() && e.typ != funcArrow && e.typ != funcClsInit {
if e.typ == funcClsInit {
e.c.throwSyntaxError(e.offset, "'arguments' is not allowed in class field initializer or static initialization block")
}
b, created := s.bindNameLexical("arguments", false, 0)
if created || b.isVar {
if !s.argsInStash {
s.moveArgsToStash()
}
if s.strict {
b.isConst = true
} else {
b.isVar = e.c.scope.isFunction()
}
pos := preambleLen - 2
delta += 2
if s.strict || hasPatterns || hasInits {
code[pos] = createArgsUnmapped(paramsCount)
} else {
code[pos] = createArgsMapped(paramsCount)
}
pos++
b.emitInitPAtScope(s, pos)
}
}
if calleeBinding != nil {
if !s.isDynamic() && calleeBinding.useCount() == 0 {
s.deleteBinding(calleeBinding)
calleeBinding = nil
} else {
delta++
calleeBinding.emitInitPAtScope(s, preambleLen-delta)
delta++
code[preambleLen-delta] = loadCallee
}
}
if thisBinding != nil {
if !s.isDynamic() && thisBinding.useCount() == 0 {
s.deleteBinding(thisBinding)
thisBinding = nil
} else {
if thisBinding.inStash || s.isDynamic() {
delta++
thisBinding.emitInitAtScope(s, preambleLen-delta)
}
}
}
stashSize, stackSize := s.finaliseVarAlloc(0)
if thisBinding != nil && thisBinding.inStash && (!s.argsInStash || stackSize > 0) {
delta++
code[preambleLen-delta] = loadStack(0)
} // otherwise, 'this' will be at stack[sp-1], no need to load
if !s.strict && thisBinding != nil {
delta++
code[preambleLen-delta] = boxThis
}
delta++
delta = preambleLen - delta
var enter instruction
if stashSize > 0 || s.argsInStash {
if firstForwardRef == -1 {
enter1 := enterFunc{
numArgs: uint32(paramsCount),
argsToStash: s.argsInStash,
stashSize: uint32(stashSize),
stackSize: uint32(stackSize),
extensible: s.dynamic,
funcType: e.typ,
}
if s.isDynamic() {
enter1.names = s.makeNamesMap()
}
enter = &enter1
if enterFunc2Mark != -1 {
ef2 := &enterFuncBody{
extensible: e.c.scope.dynamic,
funcType: e.typ,
}
e.c.updateEnterBlock(&ef2.enterBlock)
e.c.p.code[enterFunc2Mark] = ef2
}
} else {
enter1 := enterFunc1{
stashSize: uint32(stashSize),
numArgs: uint32(paramsCount),
argsToCopy: uint32(firstForwardRef),
extensible: s.dynamic,
funcType: e.typ,
}
if s.isDynamic() {
enter1.names = s.makeNamesMap()
}
enter = &enter1
if enterFunc2Mark != -1 {
ef2 := &enterFuncBody{
adjustStack: true,
extensible: e.c.scope.dynamic,
funcType: e.typ,
}
e.c.updateEnterBlock(&ef2.enterBlock)
e.c.p.code[enterFunc2Mark] = ef2
}
}
if emitArgsRestMark != -1 && s.argsInStash {
e.c.p.code[emitArgsRestMark] = createArgsRestStash
}
} else {
enter = &enterFuncStashless{
stackSize: uint32(stackSize),
args: uint32(paramsCount),
}
if enterFunc2Mark != -1 {
ef2 := &enterFuncBody{
extensible: e.c.scope.dynamic,
funcType: e.typ,
}
e.c.updateEnterBlock(&ef2.enterBlock)
e.c.p.code[enterFunc2Mark] = ef2
}
}
code[delta] = enter
e.c.p.srcMap[0].pc = delta
s.trimCode(delta)
strict = s.strict
prg = e.c.p
// e.c.p.dumpCode()
if enterFunc2Mark != -1 {
e.c.popScope()
}
e.c.popScope()
e.c.p = savedPrg
return
}
func (e *compiledFunctionLiteral) emitGetter(putOnStack bool) {
p, name, length, strict := e.compile()
switch e.typ {
case funcArrow:
if e.isAsync {
e.c.emit(&newAsyncArrowFunc{newArrowFunc: newArrowFunc{newFunc: newFunc{prg: p, length: length, name: name, source: e.source, strict: strict}}})
} else {
e.c.emit(&newArrowFunc{newFunc: newFunc{prg: p, length: length, name: name, source: e.source, strict: strict}})
}
case funcMethod, funcClsInit:
if e.isAsync {
e.c.emit(&newAsyncMethod{newMethod: newMethod{newFunc: newFunc{prg: p, length: length, name: name, source: e.source, strict: strict}, homeObjOffset: e.homeObjOffset}})
} else {
if e.isGenerator {
e.c.emit(&newGeneratorMethod{newMethod: newMethod{newFunc: newFunc{prg: p, length: length, name: name, source: e.source, strict: strict}, homeObjOffset: e.homeObjOffset}})
} else {
e.c.emit(&newMethod{newFunc: newFunc{prg: p, length: length, name: name, source: e.source, strict: strict}, homeObjOffset: e.homeObjOffset})
}
}
case funcRegular:
if e.isAsync {
e.c.emit(&newAsyncFunc{newFunc: newFunc{prg: p, length: length, name: name, source: e.source, strict: strict}})
} else {
if e.isGenerator {
e.c.emit(&newGeneratorFunc{newFunc: newFunc{prg: p, length: length, name: name, source: e.source, strict: strict}})
} else {
e.c.emit(&newFunc{prg: p, length: length, name: name, source: e.source, strict: strict})
}
}
default:
e.c.throwSyntaxError(e.offset, "Unsupported func type: %v", e.typ)
}
if !putOnStack {
e.c.emit(pop)
}
}
func (c *compiler) compileFunctionLiteral(v *ast.FunctionLiteral, isExpr bool) *compiledFunctionLiteral {
strictBody := c.isStrictStatement(v.Body)
if v.Name != nil && (c.scope.strict || strictBody != nil) {
c.checkIdentifierName(v.Name.Name, int(v.Name.Idx)-1)
c.checkIdentifierLName(v.Name.Name, int(v.Name.Idx)-1)
}
if v.Async && v.Generator {
c.throwSyntaxError(int(v.Function)-1, "Async generators are not supported yet")
}
r := &compiledFunctionLiteral{
name: v.Name,
parameterList: v.ParameterList,
body: v.Body.List,
source: v.Source,
declarationList: v.DeclarationList,
isExpr: isExpr,
typ: funcRegular,
strict: strictBody,
isAsync: v.Async,
isGenerator: v.Generator,
}
r.init(c, v.Idx0())
return r
}
type compiledClassLiteral struct {
baseCompiledExpr
name *ast.Identifier
superClass compiledExpr
body []ast.ClassElement
lhsName unistring.String
source string
isExpr bool
}
func (c *compiler) processKey(expr ast.Expression) (val unistring.String, computed bool) {
keyExpr := c.compileExpression(expr)
if keyExpr.constant() {
v, ex := c.evalConst(keyExpr)
if ex == nil {
return v.string(), false
}
}
keyExpr.emitGetter(true)
computed = true
return
}
func (e *compiledClassLiteral) processClassKey(expr ast.Expression) (privateName *privateName, key unistring.String, computed bool) {
if p, ok := expr.(*ast.PrivateIdentifier); ok {
privateName = e.c.classScope.getDeclaredPrivateId(p.Name)
key = privateIdString(p.Name)
return
}
key, computed = e.c.processKey(expr)
return
}
type clsElement struct {
key unistring.String
privateName *privateName
initializer compiledExpr
body *compiledFunctionLiteral
computed bool
}
func (e *compiledClassLiteral) emitGetter(putOnStack bool) {
e.c.newBlockScope()
s := e.c.scope
s.strict = true
enter := &enterBlock{}
mark0 := len(e.c.p.code)
e.c.emit(enter)
e.c.block = &block{
typ: blockScope,
outer: e.c.block,
}
var clsBinding *binding
var clsName unistring.String
if name := e.name; name != nil {
clsName = name.Name
clsBinding = e.c.createLexicalIdBinding(clsName, true, int(name.Idx)-1)
} else {
clsName = e.lhsName
}
var ctorMethod *ast.MethodDefinition
ctorMethodIdx := -1
staticsCount := 0
instanceFieldsCount := 0
hasStaticPrivateMethods := false
cs := &classScope{
c: e.c,
outer: e.c.classScope,
}
for idx, elt := range e.body {
switch elt := elt.(type) {
case *ast.ClassStaticBlock:
if len(elt.Block.List) > 0 {
staticsCount++
}
case *ast.FieldDefinition:
if id, ok := elt.Key.(*ast.PrivateIdentifier); ok {
cs.declarePrivateId(id.Name, ast.PropertyKindValue, elt.Static, int(elt.Idx)-1)
}
if elt.Static {
staticsCount++
} else {
instanceFieldsCount++
}
case *ast.MethodDefinition:
if !elt.Static {
if id, ok := elt.Key.(*ast.StringLiteral); ok {
if !elt.Computed && id.Value == "constructor" {
if ctorMethod != nil {
e.c.throwSyntaxError(int(id.Idx)-1, "A class may only have one constructor")
}
ctorMethod = elt
ctorMethodIdx = idx
continue
}
}
}
if id, ok := elt.Key.(*ast.PrivateIdentifier); ok {
cs.declarePrivateId(id.Name, elt.Kind, elt.Static, int(elt.Idx)-1)
if elt.Static {
hasStaticPrivateMethods = true
}
}
default:
e.c.assert(false, int(elt.Idx0())-1, "Unsupported static element: %T", elt)
}
}
var staticInit *newStaticFieldInit
if staticsCount > 0 || hasStaticPrivateMethods {
staticInit = &newStaticFieldInit{}
e.c.emit(staticInit)
}
var derived bool
var newClassIns *newClass
if superClass := e.superClass; superClass != nil {
derived = true
superClass.emitGetter(true)
ndc := &newDerivedClass{
newClass: newClass{
name: clsName,
source: e.source,
},
}
e.addSrcMap()
e.c.emit(ndc)
newClassIns = &ndc.newClass
} else {
newClassIns = &newClass{
name: clsName,
source: e.source,
}
e.addSrcMap()
e.c.emit(newClassIns)
}
e.c.classScope = cs
if ctorMethod != nil {
newClassIns.ctor, newClassIns.length = e.c.compileCtor(ctorMethod.Body, derived)
}
curIsPrototype := false
instanceFields := make([]clsElement, 0, instanceFieldsCount)
staticElements := make([]clsElement, 0, staticsCount)
// stack at this point:
//
// staticFieldInit (if staticsCount > 0 || hasStaticPrivateMethods)
// prototype
// class function
// <- sp
for idx, elt := range e.body {
if idx == ctorMethodIdx {
continue
}
switch elt := elt.(type) {
case *ast.ClassStaticBlock:
if len(elt.Block.List) > 0 {
f := e.c.compileFunctionLiteral(&ast.FunctionLiteral{
Function: elt.Idx0(),
ParameterList: &ast.ParameterList{},
Body: elt.Block,
Source: elt.Source,
DeclarationList: elt.DeclarationList,
}, true)
f.typ = funcClsInit
//f.lhsName = "<static_initializer>"
f.homeObjOffset = 1
staticElements = append(staticElements, clsElement{
body: f,
})
}
case *ast.FieldDefinition:
privateName, key, computed := e.processClassKey(elt.Key)
var el clsElement
if elt.Initializer != nil {
el.initializer = e.c.compileExpression(elt.Initializer)
}
el.computed = computed
if computed {
if elt.Static {
if curIsPrototype {
e.c.emit(defineComputedKey(5))
} else {
e.c.emit(defineComputedKey(4))
}
} else {
if curIsPrototype {
e.c.emit(defineComputedKey(3))
} else {
e.c.emit(defineComputedKey(2))
}
}
} else {
el.privateName = privateName
el.key = key
}
if elt.Static {
staticElements = append(staticElements, el)
} else {
instanceFields = append(instanceFields, el)
}
case *ast.MethodDefinition:
if elt.Static {
if curIsPrototype {
e.c.emit(pop)
curIsPrototype = false
}
} else {
if !curIsPrototype {
e.c.emit(dupN(1))
curIsPrototype = true
}
}
privateName, key, computed := e.processClassKey(elt.Key)
lit := e.c.compileFunctionLiteral(elt.Body, true)
lit.typ = funcMethod
if computed {
e.c.emit(_toPropertyKey{})
lit.homeObjOffset = 2
} else {
lit.homeObjOffset = 1
lit.lhsName = key
}
lit.emitGetter(true)
if privateName != nil {
var offset int
if elt.Static {
if curIsPrototype {
/*
staticInit
proto
cls
proto
method
<- sp
*/
offset = 5
} else {
/*
staticInit
proto
cls
method
<- sp
*/
offset = 4
}
} else {
if curIsPrototype {
offset = 3
} else {
offset = 2
}
}
switch elt.Kind {
case ast.PropertyKindGet:
e.c.emit(&definePrivateGetter{
definePrivateMethod: definePrivateMethod{
idx: privateName.idx,
targetOffset: offset,
},
})
case ast.PropertyKindSet:
e.c.emit(&definePrivateSetter{
definePrivateMethod: definePrivateMethod{
idx: privateName.idx,
targetOffset: offset,
},
})
default:
e.c.emit(&definePrivateMethod{
idx: privateName.idx,
targetOffset: offset,
})
}
} else if computed {
switch elt.Kind {
case ast.PropertyKindGet:
e.c.emit(&defineGetter{})
case ast.PropertyKindSet:
e.c.emit(&defineSetter{})
default:
e.c.emit(&defineMethod{})
}
} else {
switch elt.Kind {
case ast.PropertyKindGet:
e.c.emit(&defineGetterKeyed{key: key})
case ast.PropertyKindSet:
e.c.emit(&defineSetterKeyed{key: key})
default:
e.c.emit(&defineMethodKeyed{key: key})
}
}
}
}
if curIsPrototype {
e.c.emit(pop)
}
if len(instanceFields) > 0 {
newClassIns.initFields = e.compileFieldsAndStaticBlocks(instanceFields, "<instance_members_initializer>")
}
if staticInit != nil {
if len(staticElements) > 0 {
staticInit.initFields = e.compileFieldsAndStaticBlocks(staticElements, "<static_initializer>")
}
}
env := e.c.classScope.instanceEnv
if s.dynLookup {
newClassIns.privateMethods, newClassIns.privateFields = env.methods, env.fields
}
newClassIns.numPrivateMethods = uint32(len(env.methods))
newClassIns.numPrivateFields = uint32(len(env.fields))
newClassIns.hasPrivateEnv = len(e.c.classScope.privateNames) > 0
if (clsBinding != nil && clsBinding.useCount() > 0) || s.dynLookup {
if clsBinding != nil {
// Because this block may be in the middle of an expression, its initial stack position
// cannot be known, and therefore it may not have any stack variables.
// Note, because clsBinding would be accessed through a function, it should already be in stash,
// this is just to make sure.
clsBinding.moveToStash()
clsBinding.emitInit()
}
} else {
if clsBinding != nil {
s.deleteBinding(clsBinding)
clsBinding = nil
}
e.c.p.code[mark0] = jump(1)
}
if staticsCount > 0 || hasStaticPrivateMethods {
ise := &initStaticElements{}
e.c.emit(ise)
env := e.c.classScope.staticEnv
staticInit.numPrivateFields = uint32(len(env.fields))
staticInit.numPrivateMethods = uint32(len(env.methods))
if s.dynLookup {
// These cannot be set on staticInit, because it is executed before ClassHeritage, and therefore
// the VM's PrivateEnvironment is still not set.
ise.privateFields = env.fields
ise.privateMethods = env.methods
}
} else {
e.c.emit(endVariadic) // re-using as semantics match
}
if !putOnStack {
e.c.emit(pop)
}
if clsBinding != nil || s.dynLookup {
e.c.leaveScopeBlock(enter)
e.c.assert(enter.stackSize == 0, e.offset, "enter.StackSize != 0 in compiledClassLiteral")
} else {
e.c.block = e.c.block.outer
}
if len(e.c.classScope.privateNames) > 0 {
e.c.emit(popPrivateEnv{})
}
e.c.classScope = e.c.classScope.outer
e.c.popScope()
}
func (e *compiledClassLiteral) compileFieldsAndStaticBlocks(elements []clsElement, funcName unistring.String) *Program {
savedPrg := e.c.p
savedBlock := e.c.block
defer func() {
e.c.p = savedPrg
e.c.block = savedBlock
}()
e.c.block = &block{
typ: blockScope,
}
e.c.p = &Program{
src: savedPrg.src,
funcName: funcName,
code: e.c.newCode(2, 16),
}
e.c.newScope()
s := e.c.scope
s.funcType = funcClsInit
thisBinding := s.createThisBinding()
valIdx := 0
for _, elt := range elements {
if elt.body != nil {
e.c.emit(dup) // this
elt.body.emitGetter(true)
elt.body.addSrcMap()
e.c.emit(call(0), pop)
} else {
if elt.computed {
e.c.emit(loadComputedKey(valIdx))
valIdx++
}
if init := elt.initializer; init != nil {
if !elt.computed {
e.c.emitNamedOrConst(init, elt.key)
} else {
e.c.emitExpr(init, true)
}
} else {
e.c.emit(loadUndef)
}
if elt.privateName != nil {
e.c.emit(&definePrivateProp{
idx: elt.privateName.idx,
})
} else if elt.computed {
e.c.emit(defineProp{})
} else {
e.c.emit(definePropKeyed(elt.key))
}
}
}
//e.c.emit(halt)
if s.isDynamic() || thisBinding.useCount() > 0 {
if s.isDynamic() || thisBinding.inStash {
thisBinding.emitInitAt(1)
}
} else {
s.deleteBinding(thisBinding)
}
stashSize, stackSize := s.finaliseVarAlloc(0)
e.c.assert(stackSize == 0, e.offset, "stackSize != 0 in initFields")
if stashSize > 0 {
e.c.assert(stashSize == 1, e.offset, "stashSize != 1 in initFields")
enter := &enterFunc{
stashSize: 1,
funcType: funcClsInit,
}
if s.dynLookup {
enter.names = s.makeNamesMap()
}
e.c.p.code[0] = enter
s.trimCode(0)
} else {
s.trimCode(2)
}
res := e.c.p
e.c.popScope()
return res
}
func (c *compiler) compileClassLiteral(v *ast.ClassLiteral, isExpr bool) *compiledClassLiteral {
if v.Name != nil {
c.checkIdentifierLName(v.Name.Name, int(v.Name.Idx)-1)
}
r := &compiledClassLiteral{
name: v.Name,
superClass: c.compileExpression(v.SuperClass),
body: v.Body,
source: v.Source,
isExpr: isExpr,
}
r.init(c, v.Idx0())
return r
}
func (c *compiler) compileCtor(ctor *ast.FunctionLiteral, derived bool) (p *Program, length int) {
f := c.compileFunctionLiteral(ctor, true)
if derived {
f.typ = funcDerivedCtor
} else {
f.typ = funcCtor
}
p, _, length, _ = f.compile()
return
}
func (c *compiler) compileArrowFunctionLiteral(v *ast.ArrowFunctionLiteral) *compiledFunctionLiteral {
var strictBody *ast.StringLiteral
var body []ast.Statement
switch b := v.Body.(type) {
case *ast.BlockStatement:
strictBody = c.isStrictStatement(b)
body = b.List
case *ast.ExpressionBody:
body = []ast.Statement{
&ast.ReturnStatement{
Argument: b.Expression,
},
}
default:
c.throwSyntaxError(int(b.Idx0())-1, "Unsupported ConciseBody type: %T", b)
}
r := &compiledFunctionLiteral{
parameterList: v.ParameterList,
body: body,
source: v.Source,
declarationList: v.DeclarationList,
isExpr: true,
typ: funcArrow,
strict: strictBody,
isAsync: v.Async,
}
r.init(c, v.Idx0())
return r
}
func (c *compiler) emitLoadThis() {
b, eval := c.scope.lookupThis()
if b != nil {
b.emitGet()
} else {
if eval {
c.emit(getThisDynamic{})
} else {
c.emit(loadGlobalObject)
}
}
}
func (e *compiledThisExpr) emitGetter(putOnStack bool) {
e.addSrcMap()
e.c.emitLoadThis()
if !putOnStack {
e.c.emit(pop)
}
}
func (e *compiledSuperExpr) emitGetter(putOnStack bool) {
if putOnStack {
e.c.emit(loadSuper)
}
}
func (e *compiledNewExpr) emitGetter(putOnStack bool) {
if e.isVariadic {
e.c.emit(startVariadic)
}
e.callee.emitGetter(true)
for _, expr := range e.args {
expr.emitGetter(true)
}
e.addSrcMap()
if e.isVariadic {
e.c.emit(newVariadic, endVariadic)
} else {
e.c.emit(_new(len(e.args)))
}
if !putOnStack {
e.c.emit(pop)
}
}
func (c *compiler) compileCallArgs(list []ast.Expression) (args []compiledExpr, isVariadic bool) {
args = make([]compiledExpr, len(list))
for i, argExpr := range list {
if spread, ok := argExpr.(*ast.SpreadElement); ok {
args[i] = c.compileSpreadCallArgument(spread)
isVariadic = true
} else {
args[i] = c.compileExpression(argExpr)
}
}
return
}
func (c *compiler) compileNewExpression(v *ast.NewExpression) compiledExpr {
args, isVariadic := c.compileCallArgs(v.ArgumentList)
r := &compiledNewExpr{
compiledCallExpr: compiledCallExpr{
callee: c.compileExpression(v.Callee),
args: args,
isVariadic: isVariadic,
},
}
r.init(c, v.Idx0())
return r
}
func (e *compiledNewTarget) emitGetter(putOnStack bool) {
if s := e.c.scope.nearestThis(); s == nil || s.funcType == funcNone {
e.c.throwSyntaxError(e.offset, "new.target expression is not allowed here")
}
if putOnStack {
e.addSrcMap()
e.c.emit(loadNewTarget)
}
}
func (c *compiler) compileMetaProperty(v *ast.MetaProperty) compiledExpr {
if v.Meta.Name == "new" || v.Property.Name != "target" {
r := &compiledNewTarget{}
r.init(c, v.Idx0())
return r
}
c.throwSyntaxError(int(v.Idx)-1, "Unsupported meta property: %s.%s", v.Meta.Name, v.Property.Name)
return nil
}
func (e *compiledSequenceExpr) emitGetter(putOnStack bool) {
if len(e.sequence) > 0 {
for i := 0; i < len(e.sequence)-1; i++ {
e.sequence[i].emitGetter(false)
}
e.sequence[len(e.sequence)-1].emitGetter(putOnStack)
}
}
func (c *compiler) compileSequenceExpression(v *ast.SequenceExpression) compiledExpr {
s := make([]compiledExpr, len(v.Sequence))
for i, expr := range v.Sequence {
s[i] = c.compileExpression(expr)
}
r := &compiledSequenceExpr{
sequence: s,
}
var idx file.Idx
if len(v.Sequence) > 0 {
idx = v.Idx0()
}
r.init(c, idx)
return r
}
func (c *compiler) emitThrow(v Value) {
if o, ok := v.(*Object); ok {
t := nilSafe(o.self.getStr("name", nil)).toString().String()
switch t {
case "TypeError", "RangeError":
c.emit(loadDynamic(t))
msg := o.self.getStr("message", nil)
if msg != nil {
c.emitLiteralValue(msg)
c.emit(_new(1))
} else {
c.emit(_new(0))
}
c.emit(throw)
return
}
}
c.assert(false, 0, "unknown exception type thrown while evaluating constant expression: %s", v.String())
panic("unreachable")
}
func (c *compiler) emitConst(expr compiledExpr, putOnStack bool) {
v, ex := c.evalConst(expr)
if ex == nil {
if putOnStack {
c.emitLiteralValue(v)
}
} else {
c.emitThrow(ex.val)
}
}
func (c *compiler) evalConst(expr compiledExpr) (Value, *Exception) {
if expr, ok := expr.(*compiledLiteral); ok {
return expr.val, nil
}
if c.evalVM == nil {
c.evalVM = New().vm
}
var savedPrg *Program
createdPrg := false
if c.evalVM.prg == nil {
c.evalVM.prg = &Program{
src: c.p.src,
}
savedPrg = c.p
c.p = c.evalVM.prg
createdPrg = true
}
savedPc := len(c.p.code)
expr.emitGetter(true)
c.evalVM.pc = savedPc
ex := c.evalVM.runTry()
if createdPrg {
c.evalVM.prg = nil
c.evalVM.pc = 0
c.p = savedPrg
} else {
c.evalVM.prg.code = c.evalVM.prg.code[:savedPc]
c.p.code = c.evalVM.prg.code
}
if ex == nil {
return c.evalVM.pop(), nil
}
return nil, ex
}
func (e *compiledUnaryExpr) constant() bool {
return e.operand.constant()
}
func (e *compiledUnaryExpr) emitGetter(putOnStack bool) {
var prepare, body func()
toNumber := func() {
e.addSrcMap()
e.c.emit(toNumber)
}
switch e.operator {
case token.NOT:
e.operand.emitGetter(true)
e.c.emit(not)
goto end
case token.BITWISE_NOT:
e.operand.emitGetter(true)
e.c.emit(bnot)
goto end
case token.TYPEOF:
if o, ok := e.operand.(compiledExprOrRef); ok {
o.emitGetterOrRef()
} else {
e.operand.emitGetter(true)
}
e.c.emit(typeof)
goto end
case token.DELETE:
e.operand.deleteExpr().emitGetter(putOnStack)
return
case token.MINUS:
e.c.emitExpr(e.operand, true)
e.c.emit(neg)
goto end
case token.PLUS:
e.c.emitExpr(e.operand, true)
e.c.emit(plus)
goto end
case token.INCREMENT:
prepare = toNumber
body = func() {
e.c.emit(inc)
}
case token.DECREMENT:
prepare = toNumber
body = func() {
e.c.emit(dec)
}
case token.VOID:
e.c.emitExpr(e.operand, false)
if putOnStack {
e.c.emit(loadUndef)
}
return
default:
e.c.assert(false, e.offset, "Unknown unary operator: %s", e.operator.String())
panic("unreachable")
}
e.operand.emitUnary(prepare, body, e.postfix, putOnStack)
return
end:
if !putOnStack {
e.c.emit(pop)
}
}
func (c *compiler) compileUnaryExpression(v *ast.UnaryExpression) compiledExpr {
r := &compiledUnaryExpr{
operand: c.compileExpression(v.Operand),
operator: v.Operator,
postfix: v.Postfix,
}
r.init(c, v.Idx0())
return r
}
func (e *compiledConditionalExpr) emitGetter(putOnStack bool) {
e.test.emitGetter(true)
j := len(e.c.p.code)
e.c.emit(nil)
e.consequent.emitGetter(putOnStack)
j1 := len(e.c.p.code)
e.c.emit(nil)
e.c.p.code[j] = jne(len(e.c.p.code) - j)
e.alternate.emitGetter(putOnStack)
e.c.p.code[j1] = jump(len(e.c.p.code) - j1)
}
func (c *compiler) compileConditionalExpression(v *ast.ConditionalExpression) compiledExpr {
r := &compiledConditionalExpr{
test: c.compileExpression(v.Test),
consequent: c.compileExpression(v.Consequent),
alternate: c.compileExpression(v.Alternate),
}
r.init(c, v.Idx0())
return r
}
func (e *compiledLogicalOr) constant() bool {
if e.left.constant() {
if v, ex := e.c.evalConst(e.left); ex == nil {
if v.ToBoolean() {
return true
}
return e.right.constant()
} else {
return true
}
}
return false
}
func (e *compiledLogicalOr) emitGetter(putOnStack bool) {
if e.left.constant() {
if v, ex := e.c.evalConst(e.left); ex == nil {
if !v.ToBoolean() {
e.c.emitExpr(e.right, putOnStack)
} else {
if putOnStack {
e.c.emitLiteralValue(v)
}
}
} else {
e.c.emitThrow(ex.val)
}
return
}
e.c.emitExpr(e.left, true)
j := len(e.c.p.code)
e.addSrcMap()
e.c.emit(nil)
e.c.emitExpr(e.right, true)
e.c.p.code[j] = jeq1(len(e.c.p.code) - j)
if !putOnStack {
e.c.emit(pop)
}
}
func (e *compiledCoalesce) constant() bool {
if e.left.constant() {
if v, ex := e.c.evalConst(e.left); ex == nil {
if v != _null && v != _undefined {
return true
}
return e.right.constant()
} else {
return true
}
}
return false
}
func (e *compiledCoalesce) emitGetter(putOnStack bool) {
if e.left.constant() {
if v, ex := e.c.evalConst(e.left); ex == nil {
if v == _undefined || v == _null {
e.c.emitExpr(e.right, putOnStack)
} else {
if putOnStack {
e.c.emitLiteralValue(v)
}
}
} else {
e.c.emitThrow(ex.val)
}
return
}
e.c.emitExpr(e.left, true)
j := len(e.c.p.code)
e.addSrcMap()
e.c.emit(nil)
e.c.emitExpr(e.right, true)
e.c.p.code[j] = jcoalesc(len(e.c.p.code) - j)
if !putOnStack {
e.c.emit(pop)
}
}
func (e *compiledLogicalAnd) constant() bool {
if e.left.constant() {
if v, ex := e.c.evalConst(e.left); ex == nil {
if !v.ToBoolean() {
return true
} else {
return e.right.constant()
}
} else {
return true
}
}
return false
}
func (e *compiledLogicalAnd) emitGetter(putOnStack bool) {
var j int
if e.left.constant() {
if v, ex := e.c.evalConst(e.left); ex == nil {
if !v.ToBoolean() {
e.c.emitLiteralValue(v)
} else {
e.c.emitExpr(e.right, putOnStack)
}
} else {
e.c.emitThrow(ex.val)
}
return
}
e.left.emitGetter(true)
j = len(e.c.p.code)
e.addSrcMap()
e.c.emit(nil)
e.c.emitExpr(e.right, true)
e.c.p.code[j] = jneq1(len(e.c.p.code) - j)
if !putOnStack {
e.c.emit(pop)
}
}
func (e *compiledBinaryExpr) constant() bool {
return e.left.constant() && e.right.constant()
}
func (e *compiledBinaryExpr) emitGetter(putOnStack bool) {
e.c.emitExpr(e.left, true)
e.c.emitExpr(e.right, true)
e.addSrcMap()
switch e.operator {
case token.LESS:
e.c.emit(op_lt)
case token.GREATER:
e.c.emit(op_gt)
case token.LESS_OR_EQUAL:
e.c.emit(op_lte)
case token.GREATER_OR_EQUAL:
e.c.emit(op_gte)
case token.EQUAL:
e.c.emit(op_eq)
case token.NOT_EQUAL:
e.c.emit(op_neq)
case token.STRICT_EQUAL:
e.c.emit(op_strict_eq)
case token.STRICT_NOT_EQUAL:
e.c.emit(op_strict_neq)
case token.PLUS:
e.c.emit(add)
case token.MINUS:
e.c.emit(sub)
case token.MULTIPLY:
e.c.emit(mul)
case token.EXPONENT:
e.c.emit(exp)
case token.SLASH:
e.c.emit(div)
case token.REMAINDER:
e.c.emit(mod)
case token.AND:
e.c.emit(and)
case token.OR:
e.c.emit(or)
case token.EXCLUSIVE_OR:
e.c.emit(xor)
case token.INSTANCEOF:
e.c.emit(op_instanceof)
case token.IN:
e.c.emit(op_in)
case token.SHIFT_LEFT:
e.c.emit(sal)
case token.SHIFT_RIGHT:
e.c.emit(sar)
case token.UNSIGNED_SHIFT_RIGHT:
e.c.emit(shr)
default:
e.c.assert(false, e.offset, "Unknown operator: %s", e.operator.String())
panic("unreachable")
}
if !putOnStack {
e.c.emit(pop)
}
}
func (c *compiler) compileBinaryExpression(v *ast.BinaryExpression) compiledExpr {
switch v.Operator {
case token.LOGICAL_OR:
return c.compileLogicalOr(v.Left, v.Right, v.Idx0())
case token.COALESCE:
return c.compileCoalesce(v.Left, v.Right, v.Idx0())
case token.LOGICAL_AND:
return c.compileLogicalAnd(v.Left, v.Right, v.Idx0())
}
if id, ok := v.Left.(*ast.PrivateIdentifier); ok {
return c.compilePrivateIn(id, v.Right, id.Idx)
}
r := &compiledBinaryExpr{
left: c.compileExpression(v.Left),
right: c.compileExpression(v.Right),
operator: v.Operator,
}
r.init(c, v.Idx0())
return r
}
type compiledPrivateIn struct {
baseCompiledExpr
id unistring.String
right compiledExpr
}
func (e *compiledPrivateIn) emitGetter(putOnStack bool) {
e.right.emitGetter(true)
rn, id := e.c.resolvePrivateName(e.id, e.offset)
if rn != nil {
e.c.emit((*privateInRes)(rn))
} else {
e.c.emit((*privateInId)(id))
}
if !putOnStack {
e.c.emit(pop)
}
}
func (c *compiler) compilePrivateIn(id *ast.PrivateIdentifier, right ast.Expression, idx file.Idx) compiledExpr {
r := &compiledPrivateIn{
id: id.Name,
right: c.compileExpression(right),
}
r.init(c, idx)
return r
}
func (c *compiler) compileLogicalOr(left, right ast.Expression, idx file.Idx) compiledExpr {
r := &compiledLogicalOr{
left: c.compileExpression(left),
right: c.compileExpression(right),
}
r.init(c, idx)
return r
}
func (c *compiler) compileCoalesce(left, right ast.Expression, idx file.Idx) compiledExpr {
r := &compiledCoalesce{
left: c.compileExpression(left),
right: c.compileExpression(right),
}
r.init(c, idx)
return r
}
func (c *compiler) compileLogicalAnd(left, right ast.Expression, idx file.Idx) compiledExpr {
r := &compiledLogicalAnd{
left: c.compileExpression(left),
right: c.compileExpression(right),
}
r.init(c, idx)
return r
}
func (e *compiledObjectLiteral) emitGetter(putOnStack bool) {
e.addSrcMap()
e.c.emit(newObject)
hasProto := false
for _, prop := range e.expr.Value {
switch prop := prop.(type) {
case *ast.PropertyKeyed:
key, computed := e.c.processKey(prop.Key)
valueExpr := e.c.compileExpression(prop.Value)
var ne namedEmitter
if fn, ok := valueExpr.(*compiledFunctionLiteral); ok {
if fn.name == nil {
ne = fn
}
switch prop.Kind {
case ast.PropertyKindMethod, ast.PropertyKindGet, ast.PropertyKindSet:
fn.typ = funcMethod
if computed {
fn.homeObjOffset = 2
} else {
fn.homeObjOffset = 1
}
}
} else if v, ok := valueExpr.(namedEmitter); ok {
ne = v
}
if computed {
e.c.emit(_toPropertyKey{})
e.c.emitExpr(valueExpr, true)
switch prop.Kind {
case ast.PropertyKindValue:
if ne != nil {
e.c.emit(setElem1Named)
} else {
e.c.emit(setElem1)
}
case ast.PropertyKindMethod:
e.c.emit(&defineMethod{enumerable: true})
case ast.PropertyKindGet:
e.c.emit(&defineGetter{enumerable: true})
case ast.PropertyKindSet:
e.c.emit(&defineSetter{enumerable: true})
default:
e.c.assert(false, e.offset, "unknown property kind: %s", prop.Kind)
panic("unreachable")
}
} else {
isProto := key == __proto__ && !prop.Computed
if isProto {
if hasProto {
e.c.throwSyntaxError(int(prop.Idx0())-1, "Duplicate __proto__ fields are not allowed in object literals")
} else {
hasProto = true
}
}
if ne != nil && !isProto {
ne.emitNamed(key)
} else {
e.c.emitExpr(valueExpr, true)
}
switch prop.Kind {
case ast.PropertyKindValue:
if isProto {
e.c.emit(setProto)
} else {
e.c.emit(putProp(key))
}
case ast.PropertyKindMethod:
e.c.emit(&defineMethodKeyed{key: key, enumerable: true})
case ast.PropertyKindGet:
e.c.emit(&defineGetterKeyed{key: key, enumerable: true})
case ast.PropertyKindSet:
e.c.emit(&defineSetterKeyed{key: key, enumerable: true})
default:
e.c.assert(false, e.offset, "unknown property kind: %s", prop.Kind)
panic("unreachable")
}
}
case *ast.PropertyShort:
key := prop.Name.Name
if prop.Initializer != nil {
e.c.throwSyntaxError(int(prop.Initializer.Idx0())-1, "Invalid shorthand property initializer")
}
if e.c.scope.strict && key == "let" {
e.c.throwSyntaxError(e.offset, "'let' cannot be used as a shorthand property in strict mode")
}
e.c.compileIdentifierExpression(&prop.Name).emitGetter(true)
e.c.emit(putProp(key))
case *ast.SpreadElement:
e.c.compileExpression(prop.Expression).emitGetter(true)
e.c.emit(copySpread)
default:
e.c.assert(false, e.offset, "unknown Property type: %T", prop)
panic("unreachable")
}
}
if !putOnStack {
e.c.emit(pop)
}
}
func (c *compiler) compileObjectLiteral(v *ast.ObjectLiteral) compiledExpr {
r := &compiledObjectLiteral{
expr: v,
}
r.init(c, v.Idx0())
return r
}
func (e *compiledArrayLiteral) emitGetter(putOnStack bool) {
e.addSrcMap()
hasSpread := false
mark := len(e.c.p.code)
e.c.emit(nil)
for _, v := range e.expr.Value {
if spread, ok := v.(*ast.SpreadElement); ok {
hasSpread = true
e.c.compileExpression(spread.Expression).emitGetter(true)
e.c.emit(pushArraySpread)
} else {
if v != nil {
e.c.emitExpr(e.c.compileExpression(v), true)
} else {
e.c.emit(loadNil)
}
e.c.emit(pushArrayItem)
}
}
var objCount uint32
if !hasSpread {
objCount = uint32(len(e.expr.Value))
}
e.c.p.code[mark] = newArray(objCount)
if !putOnStack {
e.c.emit(pop)
}
}
func (c *compiler) compileArrayLiteral(v *ast.ArrayLiteral) compiledExpr {
r := &compiledArrayLiteral{
expr: v,
}
r.init(c, v.Idx0())
return r
}
func (e *compiledRegexpLiteral) emitGetter(putOnStack bool) {
if putOnStack {
pattern, err := compileRegexp(e.expr.Pattern, e.expr.Flags)
if err != nil {
e.c.throwSyntaxError(e.offset, err.Error())
}
e.c.emit(&newRegexp{pattern: pattern, src: newStringValue(e.expr.Pattern)})
}
}
func (c *compiler) compileRegexpLiteral(v *ast.RegExpLiteral) compiledExpr {
r := &compiledRegexpLiteral{
expr: v,
}
r.init(c, v.Idx0())
return r
}
func (c *compiler) emitCallee(callee compiledExpr) (calleeName unistring.String) {
switch callee := callee.(type) {
case *compiledDotExpr:
callee.left.emitGetter(true)
c.emit(getPropCallee(callee.name))
case *compiledPrivateDotExpr:
callee.left.emitGetter(true)
rn, id := c.resolvePrivateName(callee.name, callee.offset)
if rn != nil {
c.emit((*getPrivatePropResCallee)(rn))
} else {
c.emit((*getPrivatePropIdCallee)(id))
}
case *compiledSuperDotExpr:
c.emitLoadThis()
c.emit(loadSuper)
c.emit(getPropRecvCallee(callee.name))
case *compiledBracketExpr:
callee.left.emitGetter(true)
callee.member.emitGetter(true)
c.emit(getElemCallee)
case *compiledSuperBracketExpr:
c.emitLoadThis()
c.emit(loadSuper)
callee.member.emitGetter(true)
c.emit(getElemRecvCallee)
case *compiledIdentifierExpr:
calleeName = callee.name
callee.emitGetterAndCallee()
case *compiledOptionalChain:
c.startOptChain()
c.emitCallee(callee.expr)
c.endOptChain()
case *compiledOptional:
c.emitCallee(callee.expr)
c.block.conts = append(c.block.conts, len(c.p.code))
c.emit(nil)
case *compiledSuperExpr:
// no-op
default:
c.emit(loadUndef)
callee.emitGetter(true)
}
return
}
func (e *compiledCallExpr) emitGetter(putOnStack bool) {
if e.isVariadic {
e.c.emit(startVariadic)
}
calleeName := e.c.emitCallee(e.callee)
for _, expr := range e.args {
expr.emitGetter(true)
}
e.addSrcMap()
if _, ok := e.callee.(*compiledSuperExpr); ok {
b, eval := e.c.scope.lookupThis()
e.c.assert(eval || b != nil, e.offset, "super call, but no 'this' binding")
if eval {
e.c.emit(resolveThisDynamic{})
} else {
b.markAccessPoint()
e.c.emit(resolveThisStack{})
}
if e.isVariadic {
e.c.emit(superCallVariadic)
} else {
e.c.emit(superCall(len(e.args)))
}
} else if calleeName == "eval" {
foundVar := false
for sc := e.c.scope; sc != nil; sc = sc.outer {
if !foundVar && (sc.variable || sc.isFunction()) {
foundVar = true
if !sc.strict {
sc.dynamic = true
}
}
sc.dynLookup = true
}
if e.c.scope.strict {
if e.isVariadic {
e.c.emit(callEvalVariadicStrict)
} else {
e.c.emit(callEvalStrict(len(e.args)))
}
} else {
if e.isVariadic {
e.c.emit(callEvalVariadic)
} else {
e.c.emit(callEval(len(e.args)))
}
}
} else {
if e.isVariadic {
e.c.emit(callVariadic)
} else {
e.c.emit(call(len(e.args)))
}
}
if e.isVariadic {
e.c.emit(endVariadic)
}
if !putOnStack {
e.c.emit(pop)
}
}
func (e *compiledCallExpr) deleteExpr() compiledExpr {
r := &defaultDeleteExpr{
expr: e,
}
r.init(e.c, file.Idx(e.offset+1))
return r
}
func (c *compiler) compileSpreadCallArgument(spread *ast.SpreadElement) compiledExpr {
r := &compiledSpreadCallArgument{
expr: c.compileExpression(spread.Expression),
}
r.init(c, spread.Idx0())
return r
}
func (c *compiler) compileCallee(v ast.Expression) compiledExpr {
if sup, ok := v.(*ast.SuperExpression); ok {
if s := c.scope.nearestThis(); s != nil && s.funcType == funcDerivedCtor {
e := &compiledSuperExpr{}
e.init(c, sup.Idx)
return e
}
c.throwSyntaxError(int(v.Idx0())-1, "'super' keyword unexpected here")
panic("unreachable")
}
return c.compileExpression(v)
}
func (c *compiler) compileCallExpression(v *ast.CallExpression) compiledExpr {
args := make([]compiledExpr, len(v.ArgumentList))
isVariadic := false
for i, argExpr := range v.ArgumentList {
if spread, ok := argExpr.(*ast.SpreadElement); ok {
args[i] = c.compileSpreadCallArgument(spread)
isVariadic = true
} else {
args[i] = c.compileExpression(argExpr)
}
}
r := &compiledCallExpr{
args: args,
callee: c.compileCallee(v.Callee),
isVariadic: isVariadic,
}
r.init(c, v.LeftParenthesis)
return r
}
func (c *compiler) compileIdentifierExpression(v *ast.Identifier) compiledExpr {
if c.scope.strict {
c.checkIdentifierName(v.Name, int(v.Idx)-1)
}
r := &compiledIdentifierExpr{
name: v.Name,
}
r.offset = int(v.Idx) - 1
r.init(c, v.Idx0())
return r
}
func (c *compiler) compileNumberLiteral(v *ast.NumberLiteral) compiledExpr {
if c.scope.strict && len(v.Literal) > 1 && v.Literal[0] == '0' && v.Literal[1] <= '7' && v.Literal[1] >= '0' {
c.throwSyntaxError(int(v.Idx)-1, "Octal literals are not allowed in strict mode")
panic("Unreachable")
}
var val Value
switch num := v.Value.(type) {
case int64:
val = intToValue(num)
case float64:
val = floatToValue(num)
case *big.Int:
val = (*valueBigInt)(num)
default:
c.assert(false, int(v.Idx)-1, "Unsupported number literal type: %T", v.Value)
panic("unreachable")
}
r := &compiledLiteral{
val: val,
}
r.init(c, v.Idx0())
return r
}
func (c *compiler) compileStringLiteral(v *ast.StringLiteral) compiledExpr {
r := &compiledLiteral{
val: stringValueFromRaw(v.Value),
}
r.init(c, v.Idx0())
return r
}
func (c *compiler) compileTemplateLiteral(v *ast.TemplateLiteral) compiledExpr {
r := &compiledTemplateLiteral{}
if v.Tag != nil {
r.tag = c.compileExpression(v.Tag)
}
ce := make([]compiledExpr, len(v.Expressions))
for i, expr := range v.Expressions {
ce[i] = c.compileExpression(expr)
}
r.expressions = ce
r.elements = v.Elements
r.init(c, v.Idx0())
return r
}
func (c *compiler) compileBooleanLiteral(v *ast.BooleanLiteral) compiledExpr {
var val Value
if v.Value {
val = valueTrue
} else {
val = valueFalse
}
r := &compiledLiteral{
val: val,
}
r.init(c, v.Idx0())
return r
}
func (c *compiler) compileAssignExpression(v *ast.AssignExpression) compiledExpr {
// log.Printf("compileAssignExpression(): %+v", v)
r := &compiledAssignExpr{
left: c.compileExpression(v.Left),
right: c.compileExpression(v.Right),
operator: v.Operator,
}
r.init(c, v.Idx0())
return r
}
func (e *compiledEnumGetExpr) emitGetter(putOnStack bool) {
e.c.emit(enumGet)
if !putOnStack {
e.c.emit(pop)
}
}
func (c *compiler) compileObjectAssignmentPattern(v *ast.ObjectPattern) compiledExpr {
r := &compiledObjectAssignmentPattern{
expr: v,
}
r.init(c, v.Idx0())
return r
}
func (e *compiledObjectAssignmentPattern) emitGetter(putOnStack bool) {
if putOnStack {
e.c.emit(loadUndef)
}
}
func (c *compiler) compileArrayAssignmentPattern(v *ast.ArrayPattern) compiledExpr {
r := &compiledArrayAssignmentPattern{
expr: v,
}
r.init(c, v.Idx0())
return r
}
func (e *compiledArrayAssignmentPattern) emitGetter(putOnStack bool) {
if putOnStack {
e.c.emit(loadUndef)
}
}
func (c *compiler) emitExpr(expr compiledExpr, putOnStack bool) {
if expr.constant() {
c.emitConst(expr, putOnStack)
} else {
expr.emitGetter(putOnStack)
}
}
type namedEmitter interface {
emitNamed(name unistring.String)
}
func (c *compiler) emitNamed(expr compiledExpr, name unistring.String) {
if en, ok := expr.(namedEmitter); ok {
en.emitNamed(name)
} else {
expr.emitGetter(true)
}
}
func (c *compiler) emitNamedOrConst(expr compiledExpr, name unistring.String) {
if expr.constant() {
c.emitConst(expr, true)
} else {
c.emitNamed(expr, name)
}
}
func (e *compiledFunctionLiteral) emitNamed(name unistring.String) {
e.lhsName = name
e.emitGetter(true)
}
func (e *compiledClassLiteral) emitNamed(name unistring.String) {
e.lhsName = name
e.emitGetter(true)
}
func (c *compiler) emitPattern(pattern ast.Pattern, emitter func(target, init compiledExpr), putOnStack bool) {
switch pattern := pattern.(type) {
case *ast.ObjectPattern:
c.emitObjectPattern(pattern, emitter, putOnStack)
case *ast.ArrayPattern:
c.emitArrayPattern(pattern, emitter, putOnStack)
default:
c.assert(false, int(pattern.Idx0())-1, "unsupported Pattern: %T", pattern)
panic("unreachable")
}
}
func (c *compiler) emitAssign(target ast.Expression, init compiledExpr, emitAssignSimple func(target, init compiledExpr)) {
pattern, isPattern := target.(ast.Pattern)
if isPattern {
init.emitGetter(true)
c.emitPattern(pattern, emitAssignSimple, false)
} else {
emitAssignSimple(c.compileExpression(target), init)
}
}
func (c *compiler) emitObjectPattern(pattern *ast.ObjectPattern, emitAssign func(target, init compiledExpr), putOnStack bool) {
if pattern.Rest != nil {
c.emit(createDestructSrc)
} else {
c.emit(checkObjectCoercible)
}
for _, prop := range pattern.Properties {
switch prop := prop.(type) {
case *ast.PropertyShort:
c.emit(dup)
emitAssign(c.compileIdentifierExpression(&prop.Name), c.compilePatternInitExpr(func() {
c.emit(getProp(prop.Name.Name))
}, prop.Initializer, prop.Idx0()))
case *ast.PropertyKeyed:
c.emit(dup)
c.compileExpression(prop.Key).emitGetter(true)
c.emit(_toPropertyKey{})
var target ast.Expression
var initializer ast.Expression
if e, ok := prop.Value.(*ast.AssignExpression); ok {
target = e.Left
initializer = e.Right
} else {
target = prop.Value
}
c.emitAssign(target, c.compilePatternInitExpr(func() {
c.emit(getKey)
}, initializer, prop.Idx0()), emitAssign)
default:
c.throwSyntaxError(int(prop.Idx0()-1), "Unsupported AssignmentProperty type: %T", prop)
}
}
if pattern.Rest != nil {
emitAssign(c.compileExpression(pattern.Rest), c.compileEmitterExpr(func() {
c.emit(copyRest)
}, pattern.Rest.Idx0()))
c.emit(pop)
}
if !putOnStack {
c.emit(pop)
}
}
func (c *compiler) emitArrayPattern(pattern *ast.ArrayPattern, emitAssign func(target, init compiledExpr), putOnStack bool) {
c.emit(iterate)
for _, elt := range pattern.Elements {
switch elt := elt.(type) {
case nil:
c.emit(iterGetNextOrUndef{}, pop)
case *ast.AssignExpression:
c.emitAssign(elt.Left, c.compilePatternInitExpr(func() {
c.emit(iterGetNextOrUndef{})
}, elt.Right, elt.Idx0()), emitAssign)
default:
c.emitAssign(elt, c.compileEmitterExpr(func() {
c.emit(iterGetNextOrUndef{})
}, elt.Idx0()), emitAssign)
}
}
if pattern.Rest != nil {
c.emitAssign(pattern.Rest, c.compileEmitterExpr(func() {
c.emit(newArrayFromIter)
}, pattern.Rest.Idx0()), emitAssign)
} else {
c.emit(enumPopClose)
}
if !putOnStack {
c.emit(pop)
}
}
func (e *compiledObjectAssignmentPattern) emitSetter(valueExpr compiledExpr, putOnStack bool) {
valueExpr.emitGetter(true)
e.c.emitObjectPattern(e.expr, e.c.emitPatternAssign, putOnStack)
}
func (e *compiledArrayAssignmentPattern) emitSetter(valueExpr compiledExpr, putOnStack bool) {
valueExpr.emitGetter(true)
e.c.emitArrayPattern(e.expr, e.c.emitPatternAssign, putOnStack)
}
type compiledPatternInitExpr struct {
baseCompiledExpr
emitSrc func()
def compiledExpr
}
func (e *compiledPatternInitExpr) emitGetter(putOnStack bool) {
if !putOnStack {
return
}
e.emitSrc()
if e.def != nil {
mark := len(e.c.p.code)
e.c.emit(nil)
e.c.emitExpr(e.def, true)
e.c.p.code[mark] = jdef(len(e.c.p.code) - mark)
}
}
func (e *compiledPatternInitExpr) emitNamed(name unistring.String) {
e.emitSrc()
if e.def != nil {
mark := len(e.c.p.code)
e.c.emit(nil)
e.c.emitNamedOrConst(e.def, name)
e.c.p.code[mark] = jdef(len(e.c.p.code) - mark)
}
}
func (c *compiler) compilePatternInitExpr(emitSrc func(), def ast.Expression, idx file.Idx) compiledExpr {
r := &compiledPatternInitExpr{
emitSrc: emitSrc,
def: c.compileExpression(def),
}
r.init(c, idx)
return r
}
type compiledEmitterExpr struct {
baseCompiledExpr
emitter func()
namedEmitter func(name unistring.String)
}
func (e *compiledEmitterExpr) emitGetter(putOnStack bool) {
if e.emitter != nil {
e.emitter()
} else {
e.namedEmitter("")
}
if !putOnStack {
e.c.emit(pop)
}
}
func (e *compiledEmitterExpr) emitNamed(name unistring.String) {
if e.namedEmitter != nil {
e.namedEmitter(name)
} else {
e.emitter()
}
}
func (c *compiler) compileEmitterExpr(emitter func(), idx file.Idx) *compiledEmitterExpr {
r := &compiledEmitterExpr{
emitter: emitter,
}
r.init(c, idx)
return r
}
func (e *compiledSpreadCallArgument) emitGetter(putOnStack bool) {
e.expr.emitGetter(putOnStack)
if putOnStack {
e.c.emit(pushSpread)
}
}
func (c *compiler) startOptChain() {
c.block = &block{
typ: blockOptChain,
outer: c.block,
}
}
func (c *compiler) endOptChain() {
lbl := len(c.p.code)
for _, item := range c.block.breaks {
c.p.code[item] = jopt(lbl - item)
}
for _, item := range c.block.conts {
c.p.code[item] = joptc(lbl - item)
}
c.block = c.block.outer
}
func (e *compiledOptionalChain) emitGetter(putOnStack bool) {
e.c.startOptChain()
e.expr.emitGetter(true)
e.c.endOptChain()
if !putOnStack {
e.c.emit(pop)
}
}
func (e *compiledOptional) emitGetter(putOnStack bool) {
e.expr.emitGetter(putOnStack)
if putOnStack {
e.c.block.breaks = append(e.c.block.breaks, len(e.c.p.code))
e.c.emit(nil)
}
}
func (e *compiledAwaitExpression) emitGetter(putOnStack bool) {
e.arg.emitGetter(true)
e.c.emit(await)
if !putOnStack {
e.c.emit(pop)
}
}
func (e *compiledYieldExpression) emitGetter(putOnStack bool) {
if e.arg != nil {
e.arg.emitGetter(true)
} else {
e.c.emit(loadUndef)
}
if putOnStack {
if e.delegate {
e.c.emit(yieldDelegateRes)
} else {
e.c.emit(yieldRes)
}
} else {
if e.delegate {
e.c.emit(yieldDelegate)
} else {
e.c.emit(yield)
}
}
}