huoshan/llm_unfinished/chat.go
2024-10-29 12:04:22 +08:00

225 lines
6.3 KiB
Go

package huoshan
import (
"bytes"
"context"
"encoding/binary"
"io"
"strings"
"time"
"apigo.cc/ai/llm/llm"
"github.com/volcengine/volcengine-go-sdk/service/arkruntime/model"
)
func (lm *LLM) FastAsk(messages []llm.ChatMessage, callback func(answer string)) (string, llm.Usage, error) {
return lm.Ask(messages, llm.ChatConfig{
Model: ModelDoubaoLite32k,
}, callback)
}
func (lm *LLM) LongAsk(messages []llm.ChatMessage, callback func(answer string)) (string, llm.Usage, error) {
return lm.Ask(messages, llm.ChatConfig{
Model: ModelDoubaoPro256k,
}, callback)
}
func (lm *LLM) BatterAsk(messages []llm.ChatMessage, callback func(answer string)) (string, llm.Usage, error) {
return lm.Ask(messages, llm.ChatConfig{
Model: ModelDoubaoPro32k,
}, callback)
}
func (lm *LLM) BestAsk(messages []llm.ChatMessage, callback func(answer string)) (string, llm.Usage, error) {
return lm.Ask(messages, llm.ChatConfig{
Model: ModelDoubaoPro256k,
}, callback)
}
func (lm *LLM) MultiAsk(messages []llm.ChatMessage, callback func(answer string)) (string, llm.Usage, error) {
return lm.Ask(messages, llm.ChatConfig{
Model: ModelDoubaoLite32k,
}, callback)
}
func (lm *LLM) BestMultiAsk(messages []llm.ChatMessage, callback func(answer string)) (string, llm.Usage, error) {
return lm.Ask(messages, llm.ChatConfig{
Model: ModelDoubaoPro32k,
}, callback)
}
func (lm *LLM) CodeInterpreterAsk(messages []llm.ChatMessage, callback func(answer string)) (string, llm.Usage, error) {
return lm.Ask(messages, llm.ChatConfig{
Model: ModelDoubaoPro32k,
Tools: map[string]any{llm.ToolCodeInterpreter: nil},
}, callback)
}
func (lm *LLM) WebSearchAsk(messages []llm.ChatMessage, callback func(answer string)) (string, llm.Usage, error) {
return lm.Ask(messages, llm.ChatConfig{
Model: ModelDoubaoPro32k,
Tools: map[string]any{llm.ToolWebSearch: nil},
}, callback)
}
func (lm *LLM) Ask(messages []llm.ChatMessage, config llm.ChatConfig, callback func(answer string)) (string, llm.Usage, error) {
config.SetDefault(&lm.config.ChatConfig)
req := model.ChatCompletionRequest{
Model: config.GetModel(),
}
req.Messages = make([]*model.ChatCompletionMessage, len(messages))
for i, msg := range messages {
var contents []*model.ChatCompletionMessageContentPart
if msg.Contents != nil {
contents = make([]*model.ChatCompletionMessageContentPart, len(msg.Contents))
for j, inPart := range msg.Contents {
part := model.ChatCompletionMessageContentPart{}
part.Type = model.ChatCompletionMessageContentPartType(NameMap[inPart.Type])
switch inPart.Type {
case llm.TypeText:
part.Text = inPart.Content
case llm.TypeImage:
part.ImageURL = &model.ChatMessageImageURL{URL: inPart.Content}
//case llm.TypeVideo:
// part.VideoURL = &model.URLItem{URL: inPart.Content}
}
contents[j] = &part
}
}
if len(contents) == 1 && contents[0].Type == llm.TypeText {
req.Messages[i] = &model.ChatCompletionMessage{
Role: NameMap[msg.Role],
Content: &model.ChatCompletionMessageContent{
StringValue: &contents[0].Text,
},
}
} else {
req.Messages[i] = &model.ChatCompletionMessage{
Role: NameMap[msg.Role],
Content: &model.ChatCompletionMessageContent{
ListValue: contents,
},
}
}
}
// tools := config.GetTools()
// if len(tools) > 0 {
// req.Tools = make([]*model.Tool, 0)
// for name := range tools {
// switch name {
// case llm.ToolCodeInterpreter:
// req.Tools = append(req.Tools, &model.Tool{
// Type: ,
// })
// // cc.AddTool(zhipu.ChatCompletionToolCodeInterpreter{})
// case llm.ToolWebSearch:
// // cc.AddTool(zhipu.ChatCompletionToolWebBrowser{})
// }
// }
// }
if config.GetMaxTokens() != 0 {
req.MaxTokens = config.GetMaxTokens()
}
if config.GetTemperature() != 0 {
req.Temperature = float32(config.GetTemperature())
}
if config.GetTopP() != 0 {
req.TopP = float32(config.GetTopP())
}
c := lm.getChatClient()
t1 := time.Now().UnixMilli()
if callback != nil {
stream, err := c.CreateChatCompletionStream(context.Background(), req)
if err != nil {
return "", llm.Usage{}, err
}
out := make([]string, 0)
var outErr error
usage := llm.Usage{}
for {
recv, err := stream.Recv()
usage.AskTokens += int64(recv.Usage.PromptTokens)
usage.AnswerTokens += int64(recv.Usage.CompletionTokens)
usage.TotalTokens += int64(recv.Usage.TotalTokens)
if err == io.EOF {
break
}
if err != nil {
outErr = err
break
}
if len(recv.Choices) > 0 {
for _, ch := range recv.Choices {
text := ch.Delta.Content
out = append(out, text)
callback(text)
}
}
}
stream.Close()
usage.UsedTime = time.Now().UnixMilli() - t1
return strings.Join(out, ""), usage, outErr
} else {
r, err := c.CreateChatCompletion(context.Background(), req)
if err != nil {
return "", llm.Usage{}, err
}
t2 := time.Now().UnixMilli() - t1
results := make([]string, 0)
if r.Choices != nil {
for _, ch := range r.Choices {
results = append(results, *ch.Message.Content.StringValue)
}
}
return strings.Join(results, ""), llm.Usage{
AskTokens: int64(r.Usage.PromptTokens),
AnswerTokens: int64(r.Usage.CompletionTokens),
TotalTokens: int64(r.Usage.TotalTokens),
UsedTime: t2,
}, nil
}
}
func (lm *LLM) FastEmbedding(text string) ([]byte, llm.Usage, error) {
return lm.Embedding(text, ModelDoubaoEmbedding)
}
func (lm *LLM) BestEmbedding(text string) ([]byte, llm.Usage, error) {
return lm.Embedding(text, ModelDoubaoEmbeddingLarge)
}
func (lm *LLM) Embedding(text, modelName string) ([]byte, llm.Usage, error) {
c := lm.getChatClient()
// cc := c.Embedding(modelName)
req := model.EmbeddingRequestStrings{
Input: []string{text},
Model: modelName,
}
t1 := time.Now().UnixMilli()
if r, err := c.CreateEmbeddings(context.Background(), req); err == nil {
t2 := time.Now().UnixMilli() - t1
buf := new(bytes.Buffer)
if r.Data != nil {
for _, ch := range r.Data {
for _, v := range ch.Embedding {
_ = binary.Write(buf, binary.LittleEndian, float32(v))
}
}
}
return buf.Bytes(), llm.Usage{
AskTokens: int64(r.Usage.PromptTokens),
AnswerTokens: int64(r.Usage.CompletionTokens),
TotalTokens: int64(r.Usage.TotalTokens),
UsedTime: t2,
}, nil
} else {
return nil, llm.Usage{}, err
}
}