gojs/dop251/goja/object.go
2024-10-02 00:07:02 +08:00

1825 lines
44 KiB
Go

package goja
import (
"fmt"
"math"
"reflect"
"sort"
"apigo.cc/apigo/gojs/dop251/goja/unistring"
)
const (
classObject = "Object"
classArray = "Array"
classWeakSet = "WeakSet"
classWeakMap = "WeakMap"
classMap = "Map"
classMath = "Math"
classSet = "Set"
classFunction = "Function"
classAsyncFunction = "AsyncFunction"
classNumber = "Number"
classString = "String"
classBoolean = "Boolean"
classError = "Error"
classRegExp = "RegExp"
classDate = "Date"
classJSON = "JSON"
classGlobal = "global"
classPromise = "Promise"
classArrayIterator = "Array Iterator"
classMapIterator = "Map Iterator"
classSetIterator = "Set Iterator"
classStringIterator = "String Iterator"
classRegExpStringIterator = "RegExp String Iterator"
classGenerator = "Generator"
classGeneratorFunction = "GeneratorFunction"
)
var (
hintDefault Value = asciiString("default")
hintNumber Value = asciiString("number")
hintString Value = asciiString("string")
)
type Object struct {
id uint64
runtime *Runtime
self objectImpl
weakRefs map[weakMap]Value
}
type iterNextFunc func() (propIterItem, iterNextFunc)
type PropertyDescriptor struct {
jsDescriptor *Object
Value Value
Writable, Configurable, Enumerable Flag
Getter, Setter Value
}
func (p *PropertyDescriptor) Empty() bool {
var empty PropertyDescriptor
return *p == empty
}
func (p *PropertyDescriptor) IsAccessor() bool {
return p.Setter != nil || p.Getter != nil
}
func (p *PropertyDescriptor) IsData() bool {
return p.Value != nil || p.Writable != FLAG_NOT_SET
}
func (p *PropertyDescriptor) IsGeneric() bool {
return !p.IsAccessor() && !p.IsData()
}
func (p *PropertyDescriptor) toValue(r *Runtime) Value {
if p.jsDescriptor != nil {
return p.jsDescriptor
}
if p.Empty() {
return _undefined
}
o := r.NewObject()
s := o.self
if p.Value != nil {
s._putProp("value", p.Value, true, true, true)
}
if p.Writable != FLAG_NOT_SET {
s._putProp("writable", valueBool(p.Writable.Bool()), true, true, true)
}
if p.Enumerable != FLAG_NOT_SET {
s._putProp("enumerable", valueBool(p.Enumerable.Bool()), true, true, true)
}
if p.Configurable != FLAG_NOT_SET {
s._putProp("configurable", valueBool(p.Configurable.Bool()), true, true, true)
}
if p.Getter != nil {
s._putProp("get", p.Getter, true, true, true)
}
if p.Setter != nil {
s._putProp("set", p.Setter, true, true, true)
}
return o
}
func (p *PropertyDescriptor) complete() {
if p.Getter == nil && p.Setter == nil {
if p.Value == nil {
p.Value = _undefined
}
if p.Writable == FLAG_NOT_SET {
p.Writable = FLAG_FALSE
}
} else {
if p.Getter == nil {
p.Getter = _undefined
}
if p.Setter == nil {
p.Setter = _undefined
}
}
if p.Enumerable == FLAG_NOT_SET {
p.Enumerable = FLAG_FALSE
}
if p.Configurable == FLAG_NOT_SET {
p.Configurable = FLAG_FALSE
}
}
type objectExportCacheItem map[reflect.Type]interface{}
type objectExportCtx struct {
cache map[*Object]interface{}
}
type objectImpl interface {
sortable
className() string
typeOf() String
getStr(p unistring.String, receiver Value) Value
getIdx(p valueInt, receiver Value) Value
getSym(p *Symbol, receiver Value) Value
getOwnPropStr(unistring.String) Value
getOwnPropIdx(valueInt) Value
getOwnPropSym(*Symbol) Value
setOwnStr(p unistring.String, v Value, throw bool) bool
setOwnIdx(p valueInt, v Value, throw bool) bool
setOwnSym(p *Symbol, v Value, throw bool) bool
setForeignStr(p unistring.String, v, receiver Value, throw bool) (res bool, handled bool)
setForeignIdx(p valueInt, v, receiver Value, throw bool) (res bool, handled bool)
setForeignSym(p *Symbol, v, receiver Value, throw bool) (res bool, handled bool)
hasPropertyStr(unistring.String) bool
hasPropertyIdx(idx valueInt) bool
hasPropertySym(s *Symbol) bool
hasOwnPropertyStr(unistring.String) bool
hasOwnPropertyIdx(valueInt) bool
hasOwnPropertySym(s *Symbol) bool
defineOwnPropertyStr(name unistring.String, desc PropertyDescriptor, throw bool) bool
defineOwnPropertyIdx(name valueInt, desc PropertyDescriptor, throw bool) bool
defineOwnPropertySym(name *Symbol, desc PropertyDescriptor, throw bool) bool
deleteStr(name unistring.String, throw bool) bool
deleteIdx(idx valueInt, throw bool) bool
deleteSym(s *Symbol, throw bool) bool
assertCallable() (call func(FunctionCall) Value, ok bool)
vmCall(vm *vm, n int)
assertConstructor() func(args []Value, newTarget *Object) *Object
proto() *Object
setProto(proto *Object, throw bool) bool
hasInstance(v Value) bool
isExtensible() bool
preventExtensions(throw bool) bool
export(ctx *objectExportCtx) interface{}
exportType() reflect.Type
exportToMap(m reflect.Value, typ reflect.Type, ctx *objectExportCtx) error
exportToArrayOrSlice(s reflect.Value, typ reflect.Type, ctx *objectExportCtx) error
equal(objectImpl) bool
iterateStringKeys() iterNextFunc
iterateSymbols() iterNextFunc
iterateKeys() iterNextFunc
stringKeys(all bool, accum []Value) []Value
symbols(all bool, accum []Value) []Value
keys(all bool, accum []Value) []Value
_putProp(name unistring.String, value Value, writable, enumerable, configurable bool) Value
_putSym(s *Symbol, prop Value)
getPrivateEnv(typ *privateEnvType, create bool) *privateElements
}
type baseObject struct {
class string
val *Object
prototype *Object
extensible bool
values map[unistring.String]Value
propNames []unistring.String
lastSortedPropLen, idxPropCount int
symValues *orderedMap
privateElements map[*privateEnvType]*privateElements
}
type guardedObject struct {
baseObject
guardedProps map[unistring.String]struct{}
}
type primitiveValueObject struct {
baseObject
pValue Value
}
func (o *primitiveValueObject) export(*objectExportCtx) interface{} {
return o.pValue.Export()
}
func (o *primitiveValueObject) exportType() reflect.Type {
return o.pValue.ExportType()
}
type FunctionCall struct {
This Value
Arguments []Value
}
type ConstructorCall struct {
This *Object
Arguments []Value
NewTarget *Object
}
func (f FunctionCall) Argument(idx int) Value {
if idx < len(f.Arguments) {
return f.Arguments[idx]
}
return _undefined
}
func (f ConstructorCall) Argument(idx int) Value {
if idx < len(f.Arguments) {
return f.Arguments[idx]
}
return _undefined
}
func (o *baseObject) init() {
o.values = make(map[unistring.String]Value)
}
func (o *baseObject) className() string {
return o.class
}
func (o *baseObject) typeOf() String {
return stringObjectC
}
func (o *baseObject) hasPropertyStr(name unistring.String) bool {
if o.val.self.hasOwnPropertyStr(name) {
return true
}
if o.prototype != nil {
return o.prototype.self.hasPropertyStr(name)
}
return false
}
func (o *baseObject) hasPropertyIdx(idx valueInt) bool {
return o.val.self.hasPropertyStr(idx.string())
}
func (o *baseObject) hasPropertySym(s *Symbol) bool {
if o.hasOwnPropertySym(s) {
return true
}
if o.prototype != nil {
return o.prototype.self.hasPropertySym(s)
}
return false
}
func (o *baseObject) getWithOwnProp(prop, p, receiver Value) Value {
if prop == nil && o.prototype != nil {
if receiver == nil {
return o.prototype.get(p, o.val)
}
return o.prototype.get(p, receiver)
}
if prop, ok := prop.(*valueProperty); ok {
if receiver == nil {
return prop.get(o.val)
}
return prop.get(receiver)
}
return prop
}
func (o *baseObject) getStrWithOwnProp(prop Value, name unistring.String, receiver Value) Value {
if prop == nil && o.prototype != nil {
if receiver == nil {
return o.prototype.self.getStr(name, o.val)
}
return o.prototype.self.getStr(name, receiver)
}
if prop, ok := prop.(*valueProperty); ok {
if receiver == nil {
return prop.get(o.val)
}
return prop.get(receiver)
}
return prop
}
func (o *baseObject) getIdx(idx valueInt, receiver Value) Value {
return o.val.self.getStr(idx.string(), receiver)
}
func (o *baseObject) getSym(s *Symbol, receiver Value) Value {
return o.getWithOwnProp(o.getOwnPropSym(s), s, receiver)
}
func (o *baseObject) getStr(name unistring.String, receiver Value) Value {
prop := o.values[name]
if prop == nil {
if o.prototype != nil {
if receiver == nil {
return o.prototype.self.getStr(name, o.val)
}
return o.prototype.self.getStr(name, receiver)
}
}
if prop, ok := prop.(*valueProperty); ok {
if receiver == nil {
return prop.get(o.val)
}
return prop.get(receiver)
}
return prop
}
func (o *baseObject) getOwnPropIdx(idx valueInt) Value {
return o.val.self.getOwnPropStr(idx.string())
}
func (o *baseObject) getOwnPropSym(s *Symbol) Value {
if o.symValues != nil {
return o.symValues.get(s)
}
return nil
}
func (o *baseObject) getOwnPropStr(name unistring.String) Value {
return o.values[name]
}
func (o *baseObject) checkDeleteProp(name unistring.String, prop *valueProperty, throw bool) bool {
if !prop.configurable {
if throw {
r := o.val.runtime
panic(r.NewTypeError("Cannot delete property '%s' of %s", name, r.objectproto_toString(FunctionCall{This: o.val})))
}
return false
}
return true
}
func (o *baseObject) checkDelete(name unistring.String, val Value, throw bool) bool {
if val, ok := val.(*valueProperty); ok {
return o.checkDeleteProp(name, val, throw)
}
return true
}
func (o *baseObject) _delete(name unistring.String) {
delete(o.values, name)
for i, n := range o.propNames {
if n == name {
names := o.propNames
if namesMarkedForCopy(names) {
newNames := make([]unistring.String, len(names)-1, shrinkCap(len(names), cap(names)))
copy(newNames, names[:i])
copy(newNames[i:], names[i+1:])
o.propNames = newNames
} else {
copy(names[i:], names[i+1:])
names[len(names)-1] = ""
o.propNames = names[:len(names)-1]
}
if i < o.lastSortedPropLen {
o.lastSortedPropLen--
if i < o.idxPropCount {
o.idxPropCount--
}
}
break
}
}
}
func (o *baseObject) deleteIdx(idx valueInt, throw bool) bool {
return o.val.self.deleteStr(idx.string(), throw)
}
func (o *baseObject) deleteSym(s *Symbol, throw bool) bool {
if o.symValues != nil {
if val := o.symValues.get(s); val != nil {
if !o.checkDelete(s.descriptiveString().string(), val, throw) {
return false
}
o.symValues.remove(s)
}
}
return true
}
func (o *baseObject) deleteStr(name unistring.String, throw bool) bool {
if val, exists := o.values[name]; exists {
if !o.checkDelete(name, val, throw) {
return false
}
o._delete(name)
}
return true
}
func (o *baseObject) setProto(proto *Object, throw bool) bool {
current := o.prototype
if current.SameAs(proto) {
return true
}
if !o.extensible {
o.val.runtime.typeErrorResult(throw, "%s is not extensible", o.val)
return false
}
for p := proto; p != nil; p = p.self.proto() {
if p.SameAs(o.val) {
o.val.runtime.typeErrorResult(throw, "Cyclic __proto__ value")
return false
}
if _, ok := p.self.(*proxyObject); ok {
break
}
}
o.prototype = proto
return true
}
func (o *baseObject) setOwnStr(name unistring.String, val Value, throw bool) bool {
ownDesc := o.values[name]
if ownDesc == nil {
if proto := o.prototype; proto != nil {
// we know it's foreign because prototype loops are not allowed
if res, handled := proto.self.setForeignStr(name, val, o.val, throw); handled {
return res
}
}
// new property
if !o.extensible {
o.val.runtime.typeErrorResult(throw, "Cannot add property %s, object is not extensible", name)
return false
} else {
o.values[name] = val
names := copyNamesIfNeeded(o.propNames, 1)
o.propNames = append(names, name)
}
return true
}
if prop, ok := ownDesc.(*valueProperty); ok {
if !prop.isWritable() {
o.val.runtime.typeErrorResult(throw, "Cannot assign to read only property '%s'", name)
return false
} else {
prop.set(o.val, val)
}
} else {
o.values[name] = val
}
return true
}
func (o *baseObject) setOwnIdx(idx valueInt, val Value, throw bool) bool {
return o.val.self.setOwnStr(idx.string(), val, throw)
}
func (o *baseObject) setOwnSym(name *Symbol, val Value, throw bool) bool {
var ownDesc Value
if o.symValues != nil {
ownDesc = o.symValues.get(name)
}
if ownDesc == nil {
if proto := o.prototype; proto != nil {
// we know it's foreign because prototype loops are not allowed
if res, handled := proto.self.setForeignSym(name, val, o.val, throw); handled {
return res
}
}
// new property
if !o.extensible {
o.val.runtime.typeErrorResult(throw, "Cannot add property %s, object is not extensible", name)
return false
} else {
if o.symValues == nil {
o.symValues = newOrderedMap(nil)
}
o.symValues.set(name, val)
}
return true
}
if prop, ok := ownDesc.(*valueProperty); ok {
if !prop.isWritable() {
o.val.runtime.typeErrorResult(throw, "Cannot assign to read only property '%s'", name)
return false
} else {
prop.set(o.val, val)
}
} else {
o.symValues.set(name, val)
}
return true
}
func (o *baseObject) _setForeignStr(name unistring.String, prop, val, receiver Value, throw bool) (bool, bool) {
if prop != nil {
if prop, ok := prop.(*valueProperty); ok {
if !prop.isWritable() {
o.val.runtime.typeErrorResult(throw, "Cannot assign to read only property '%s'", name)
return false, true
}
if prop.setterFunc != nil {
prop.set(receiver, val)
return true, true
}
}
} else {
if proto := o.prototype; proto != nil {
if receiver != proto {
return proto.self.setForeignStr(name, val, receiver, throw)
}
return proto.self.setOwnStr(name, val, throw), true
}
}
return false, false
}
func (o *baseObject) _setForeignIdx(idx valueInt, prop, val, receiver Value, throw bool) (bool, bool) {
if prop != nil {
if prop, ok := prop.(*valueProperty); ok {
if !prop.isWritable() {
o.val.runtime.typeErrorResult(throw, "Cannot assign to read only property '%d'", idx)
return false, true
}
if prop.setterFunc != nil {
prop.set(receiver, val)
return true, true
}
}
} else {
if proto := o.prototype; proto != nil {
if receiver != proto {
return proto.self.setForeignIdx(idx, val, receiver, throw)
}
return proto.self.setOwnIdx(idx, val, throw), true
}
}
return false, false
}
func (o *baseObject) setForeignStr(name unistring.String, val, receiver Value, throw bool) (bool, bool) {
return o._setForeignStr(name, o.values[name], val, receiver, throw)
}
func (o *baseObject) setForeignIdx(name valueInt, val, receiver Value, throw bool) (bool, bool) {
if idx := toIdx(name); idx != math.MaxUint32 {
o.ensurePropOrder()
if o.idxPropCount == 0 {
return o._setForeignIdx(name, name, nil, receiver, throw)
}
}
return o.setForeignStr(name.string(), val, receiver, throw)
}
func (o *baseObject) setForeignSym(name *Symbol, val, receiver Value, throw bool) (bool, bool) {
var prop Value
if o.symValues != nil {
prop = o.symValues.get(name)
}
if prop != nil {
if prop, ok := prop.(*valueProperty); ok {
if !prop.isWritable() {
o.val.runtime.typeErrorResult(throw, "Cannot assign to read only property '%s'", name)
return false, true
}
if prop.setterFunc != nil {
prop.set(receiver, val)
return true, true
}
}
} else {
if proto := o.prototype; proto != nil {
if receiver != o.val {
return proto.self.setForeignSym(name, val, receiver, throw)
}
return proto.self.setOwnSym(name, val, throw), true
}
}
return false, false
}
func (o *baseObject) hasOwnPropertySym(s *Symbol) bool {
if o.symValues != nil {
return o.symValues.has(s)
}
return false
}
func (o *baseObject) hasOwnPropertyStr(name unistring.String) bool {
_, exists := o.values[name]
return exists
}
func (o *baseObject) hasOwnPropertyIdx(idx valueInt) bool {
return o.val.self.hasOwnPropertyStr(idx.string())
}
func (o *baseObject) _defineOwnProperty(name unistring.String, existingValue Value, descr PropertyDescriptor, throw bool) (val Value, ok bool) {
getterObj, _ := descr.Getter.(*Object)
setterObj, _ := descr.Setter.(*Object)
var existing *valueProperty
if existingValue == nil {
if !o.extensible {
o.val.runtime.typeErrorResult(throw, "Cannot define property %s, object is not extensible", name)
return nil, false
}
existing = &valueProperty{}
} else {
if existing, ok = existingValue.(*valueProperty); !ok {
existing = &valueProperty{
writable: true,
enumerable: true,
configurable: true,
value: existingValue,
}
}
if !existing.configurable {
if descr.Configurable == FLAG_TRUE {
goto Reject
}
if descr.Enumerable != FLAG_NOT_SET && descr.Enumerable.Bool() != existing.enumerable {
goto Reject
}
}
if existing.accessor && descr.Value != nil || !existing.accessor && (getterObj != nil || setterObj != nil) {
if !existing.configurable {
goto Reject
}
} else if !existing.accessor {
if !existing.configurable {
if !existing.writable {
if descr.Writable == FLAG_TRUE {
goto Reject
}
if descr.Value != nil && !descr.Value.SameAs(existing.value) {
goto Reject
}
}
}
} else {
if !existing.configurable {
if descr.Getter != nil && existing.getterFunc != getterObj || descr.Setter != nil && existing.setterFunc != setterObj {
goto Reject
}
}
}
}
if descr.Writable == FLAG_TRUE && descr.Enumerable == FLAG_TRUE && descr.Configurable == FLAG_TRUE && descr.Value != nil {
return descr.Value, true
}
if descr.Writable != FLAG_NOT_SET {
existing.writable = descr.Writable.Bool()
}
if descr.Enumerable != FLAG_NOT_SET {
existing.enumerable = descr.Enumerable.Bool()
}
if descr.Configurable != FLAG_NOT_SET {
existing.configurable = descr.Configurable.Bool()
}
if descr.Value != nil {
existing.value = descr.Value
existing.getterFunc = nil
existing.setterFunc = nil
}
if descr.Value != nil || descr.Writable != FLAG_NOT_SET {
existing.accessor = false
}
if descr.Getter != nil {
existing.getterFunc = propGetter(o.val, descr.Getter, o.val.runtime)
existing.value = nil
existing.accessor = true
}
if descr.Setter != nil {
existing.setterFunc = propSetter(o.val, descr.Setter, o.val.runtime)
existing.value = nil
existing.accessor = true
}
if !existing.accessor && existing.value == nil {
existing.value = _undefined
}
return existing, true
Reject:
o.val.runtime.typeErrorResult(throw, "Cannot redefine property: %s", name)
return nil, false
}
func (o *baseObject) defineOwnPropertyStr(name unistring.String, descr PropertyDescriptor, throw bool) bool {
existingVal := o.values[name]
if v, ok := o._defineOwnProperty(name, existingVal, descr, throw); ok {
o.values[name] = v
if existingVal == nil {
names := copyNamesIfNeeded(o.propNames, 1)
o.propNames = append(names, name)
}
return true
}
return false
}
func (o *baseObject) defineOwnPropertyIdx(idx valueInt, desc PropertyDescriptor, throw bool) bool {
return o.val.self.defineOwnPropertyStr(idx.string(), desc, throw)
}
func (o *baseObject) defineOwnPropertySym(s *Symbol, descr PropertyDescriptor, throw bool) bool {
var existingVal Value
if o.symValues != nil {
existingVal = o.symValues.get(s)
}
if v, ok := o._defineOwnProperty(s.descriptiveString().string(), existingVal, descr, throw); ok {
if o.symValues == nil {
o.symValues = newOrderedMap(nil)
}
o.symValues.set(s, v)
return true
}
return false
}
func (o *baseObject) _put(name unistring.String, v Value) {
if _, exists := o.values[name]; !exists {
names := copyNamesIfNeeded(o.propNames, 1)
o.propNames = append(names, name)
}
o.values[name] = v
}
func valueProp(value Value, writable, enumerable, configurable bool) Value {
if writable && enumerable && configurable {
return value
}
return &valueProperty{
value: value,
writable: writable,
enumerable: enumerable,
configurable: configurable,
}
}
func (o *baseObject) _putProp(name unistring.String, value Value, writable, enumerable, configurable bool) Value {
prop := valueProp(value, writable, enumerable, configurable)
o._put(name, prop)
return prop
}
func (o *baseObject) _putSym(s *Symbol, prop Value) {
if o.symValues == nil {
o.symValues = newOrderedMap(nil)
}
o.symValues.set(s, prop)
}
func (o *baseObject) getPrivateEnv(typ *privateEnvType, create bool) *privateElements {
env := o.privateElements[typ]
if env != nil && create {
panic(o.val.runtime.NewTypeError("Private fields for the class have already been set"))
}
if env == nil && create {
env = &privateElements{
fields: make([]Value, typ.numFields),
}
if o.privateElements == nil {
o.privateElements = make(map[*privateEnvType]*privateElements)
}
o.privateElements[typ] = env
}
return env
}
func (o *Object) tryPrimitive(methodName unistring.String) Value {
if method, ok := o.self.getStr(methodName, nil).(*Object); ok {
if call, ok := method.self.assertCallable(); ok {
v := call(FunctionCall{
This: o,
})
if _, fail := v.(*Object); !fail {
return v
}
}
}
return nil
}
func (o *Object) ordinaryToPrimitiveNumber() Value {
if v := o.tryPrimitive("valueOf"); v != nil {
return v
}
if v := o.tryPrimitive("toString"); v != nil {
return v
}
panic(o.runtime.NewTypeError("Could not convert %v to primitive", o.self))
}
func (o *Object) ordinaryToPrimitiveString() Value {
if v := o.tryPrimitive("toString"); v != nil {
return v
}
if v := o.tryPrimitive("valueOf"); v != nil {
return v
}
panic(o.runtime.NewTypeError("Could not convert %v (%T) to primitive", o.self, o.self))
}
func (o *Object) tryExoticToPrimitive(hint Value) Value {
exoticToPrimitive := toMethod(o.self.getSym(SymToPrimitive, nil))
if exoticToPrimitive != nil {
ret := exoticToPrimitive(FunctionCall{
This: o,
Arguments: []Value{hint},
})
if _, fail := ret.(*Object); !fail {
return ret
}
panic(o.runtime.NewTypeError("Cannot convert object to primitive value"))
}
return nil
}
func (o *Object) toPrimitiveNumber() Value {
if v := o.tryExoticToPrimitive(hintNumber); v != nil {
return v
}
return o.ordinaryToPrimitiveNumber()
}
func (o *Object) toPrimitiveString() Value {
if v := o.tryExoticToPrimitive(hintString); v != nil {
return v
}
return o.ordinaryToPrimitiveString()
}
func (o *Object) toPrimitive() Value {
if v := o.tryExoticToPrimitive(hintDefault); v != nil {
return v
}
return o.ordinaryToPrimitiveNumber()
}
func (o *baseObject) assertCallable() (func(FunctionCall) Value, bool) {
return nil, false
}
func (o *baseObject) vmCall(vm *vm, _ int) {
panic(vm.r.NewTypeError("Not a function: %s", o.val.toString()))
}
func (o *baseObject) assertConstructor() func(args []Value, newTarget *Object) *Object {
return nil
}
func (o *baseObject) proto() *Object {
return o.prototype
}
func (o *baseObject) isExtensible() bool {
return o.extensible
}
func (o *baseObject) preventExtensions(bool) bool {
o.extensible = false
return true
}
func (o *baseObject) sortLen() int {
return toIntStrict(toLength(o.val.self.getStr("length", nil)))
}
func (o *baseObject) sortGet(i int) Value {
return o.val.self.getIdx(valueInt(i), nil)
}
func (o *baseObject) swap(i int, j int) {
ii := valueInt(i)
jj := valueInt(j)
x := o.val.self.getIdx(ii, nil)
y := o.val.self.getIdx(jj, nil)
o.val.self.setOwnIdx(ii, y, false)
o.val.self.setOwnIdx(jj, x, false)
}
func (o *baseObject) export(ctx *objectExportCtx) interface{} {
if v, exists := ctx.get(o.val); exists {
return v
}
keys := o.stringKeys(false, nil)
m := make(map[string]interface{}, len(keys))
ctx.put(o.val, m)
for _, itemName := range keys {
itemNameStr := itemName.String()
v := o.val.self.getStr(itemName.string(), nil)
if v != nil {
m[itemNameStr] = exportValue(v, ctx)
} else {
m[itemNameStr] = nil
}
}
return m
}
func (o *baseObject) exportType() reflect.Type {
return reflectTypeMap
}
func genericExportToMap(o *Object, dst reflect.Value, typ reflect.Type, ctx *objectExportCtx) error {
dst.Set(reflect.MakeMap(typ))
ctx.putTyped(o, typ, dst.Interface())
keyTyp := typ.Key()
elemTyp := typ.Elem()
needConvertKeys := !reflectTypeString.AssignableTo(keyTyp)
iter := &enumerableIter{
o: o,
wrapped: o.self.iterateStringKeys(),
}
r := o.runtime
for item, next := iter.next(); next != nil; item, next = next() {
var kv reflect.Value
var err error
if needConvertKeys {
kv = reflect.New(keyTyp).Elem()
err = r.toReflectValue(item.name, kv, ctx)
if err != nil {
return fmt.Errorf("could not convert map key %s to %v: %w", item.name.String(), typ, err)
}
} else {
kv = reflect.ValueOf(item.name.String())
}
ival := o.self.getStr(item.name.string(), nil)
if ival != nil {
vv := reflect.New(elemTyp).Elem()
err = r.toReflectValue(ival, vv, ctx)
if err != nil {
return fmt.Errorf("could not convert map value %v to %v at key %s: %w", ival, typ, item.name.String(), err)
}
dst.SetMapIndex(kv, vv)
} else {
dst.SetMapIndex(kv, reflect.Zero(elemTyp))
}
}
return nil
}
func (o *baseObject) exportToMap(m reflect.Value, typ reflect.Type, ctx *objectExportCtx) error {
return genericExportToMap(o.val, m, typ, ctx)
}
func genericExportToArrayOrSlice(o *Object, dst reflect.Value, typ reflect.Type, ctx *objectExportCtx) (err error) {
r := o.runtime
if method := toMethod(r.getV(o, SymIterator)); method != nil {
// iterable
var values []Value
// cannot change (append to) the slice once it's been put into the cache, so we need to know its length beforehand
ex := r.try(func() {
values = r.iterableToList(o, method)
})
if ex != nil {
return ex
}
if typ.Kind() == reflect.Array {
if dst.Len() != len(values) {
return fmt.Errorf("cannot convert an iterable into an array, lengths mismatch (have %d, need %d)", len(values), dst.Len())
}
} else {
dst.Set(reflect.MakeSlice(typ, len(values), len(values)))
}
ctx.putTyped(o, typ, dst.Interface())
for i, val := range values {
err = r.toReflectValue(val, dst.Index(i), ctx)
if err != nil {
return
}
}
} else {
// array-like
var lp Value
if _, ok := o.self.assertCallable(); !ok {
lp = o.self.getStr("length", nil)
}
if lp == nil {
return fmt.Errorf("cannot convert %v to %v: not an array or iterable", o, typ)
}
l := toIntStrict(toLength(lp))
if dst.Len() != l {
if typ.Kind() == reflect.Array {
return fmt.Errorf("cannot convert an array-like object into an array, lengths mismatch (have %d, need %d)", l, dst.Len())
} else {
dst.Set(reflect.MakeSlice(typ, l, l))
}
}
ctx.putTyped(o, typ, dst.Interface())
for i := 0; i < l; i++ {
val := nilSafe(o.self.getIdx(valueInt(i), nil))
err = r.toReflectValue(val, dst.Index(i), ctx)
if err != nil {
return
}
}
}
return
}
func (o *baseObject) exportToArrayOrSlice(dst reflect.Value, typ reflect.Type, ctx *objectExportCtx) error {
return genericExportToArrayOrSlice(o.val, dst, typ, ctx)
}
type enumerableFlag int
const (
_ENUM_UNKNOWN enumerableFlag = iota
_ENUM_FALSE
_ENUM_TRUE
)
type propIterItem struct {
name Value
value Value
enumerable enumerableFlag
}
type objectPropIter struct {
o *baseObject
propNames []unistring.String
idx int
}
type recursivePropIter struct {
o objectImpl
cur iterNextFunc
seen map[unistring.String]struct{}
}
type enumerableIter struct {
o *Object
wrapped iterNextFunc
}
func (i *enumerableIter) next() (propIterItem, iterNextFunc) {
for {
var item propIterItem
item, i.wrapped = i.wrapped()
if i.wrapped == nil {
return item, nil
}
if item.enumerable == _ENUM_FALSE {
continue
}
if item.enumerable == _ENUM_UNKNOWN {
var prop Value
if item.value == nil {
prop = i.o.getOwnProp(item.name)
} else {
prop = item.value
}
if prop == nil {
continue
}
if prop, ok := prop.(*valueProperty); ok {
if !prop.enumerable {
continue
}
}
}
return item, i.next
}
}
func (i *recursivePropIter) next() (propIterItem, iterNextFunc) {
for {
var item propIterItem
item, i.cur = i.cur()
if i.cur == nil {
if proto := i.o.proto(); proto != nil {
i.cur = proto.self.iterateStringKeys()
i.o = proto.self
continue
}
return propIterItem{}, nil
}
name := item.name.string()
if _, exists := i.seen[name]; !exists {
i.seen[name] = struct{}{}
return item, i.next
}
}
}
func enumerateRecursive(o *Object) iterNextFunc {
return (&enumerableIter{
o: o,
wrapped: (&recursivePropIter{
o: o.self,
cur: o.self.iterateStringKeys(),
seen: make(map[unistring.String]struct{}),
}).next,
}).next
}
func (i *objectPropIter) next() (propIterItem, iterNextFunc) {
for i.idx < len(i.propNames) {
name := i.propNames[i.idx]
i.idx++
prop := i.o.values[name]
if prop != nil {
return propIterItem{name: stringValueFromRaw(name), value: prop}, i.next
}
}
clearNamesCopyMarker(i.propNames)
return propIterItem{}, nil
}
var copyMarker = unistring.String(" ")
// Set a copy-on-write flag so that any subsequent modifications of anything below the current length
// trigger a copy.
// The marker is a special value put at the index position of cap-1. Capacity is set so that the marker is
// beyond the current length (therefore invisible to normal slice operations).
// This function is called before an iteration begins to avoid copying of the names array if
// there are no modifications within the iteration.
// Note that the copying also occurs in two cases: nested iterations (on the same object) and
// iterations after a previously abandoned iteration (because there is currently no mechanism to close an
// iterator). It is still better than copying every time.
func prepareNamesForCopy(names []unistring.String) []unistring.String {
if len(names) == 0 {
return names
}
if namesMarkedForCopy(names) || cap(names) == len(names) {
var newcap int
if cap(names) == len(names) {
newcap = growCap(len(names)+1, len(names), cap(names))
} else {
newcap = cap(names)
}
newNames := make([]unistring.String, len(names), newcap)
copy(newNames, names)
names = newNames
}
names[cap(names)-1 : cap(names)][0] = copyMarker
return names
}
func namesMarkedForCopy(names []unistring.String) bool {
return cap(names) > len(names) && names[cap(names)-1 : cap(names)][0] == copyMarker
}
func clearNamesCopyMarker(names []unistring.String) {
if cap(names) > len(names) {
names[cap(names)-1 : cap(names)][0] = ""
}
}
func copyNamesIfNeeded(names []unistring.String, extraCap int) []unistring.String {
if namesMarkedForCopy(names) && len(names)+extraCap >= cap(names) {
var newcap int
newsize := len(names) + extraCap + 1
if newsize > cap(names) {
newcap = growCap(newsize, len(names), cap(names))
} else {
newcap = cap(names)
}
newNames := make([]unistring.String, len(names), newcap)
copy(newNames, names)
return newNames
}
return names
}
func (o *baseObject) iterateStringKeys() iterNextFunc {
o.ensurePropOrder()
propNames := prepareNamesForCopy(o.propNames)
o.propNames = propNames
return (&objectPropIter{
o: o,
propNames: propNames,
}).next
}
type objectSymbolIter struct {
iter *orderedMapIter
}
func (i *objectSymbolIter) next() (propIterItem, iterNextFunc) {
entry := i.iter.next()
if entry != nil {
return propIterItem{
name: entry.key,
value: entry.value,
}, i.next
}
return propIterItem{}, nil
}
func (o *baseObject) iterateSymbols() iterNextFunc {
if o.symValues != nil {
return (&objectSymbolIter{
iter: o.symValues.newIter(),
}).next
}
return func() (propIterItem, iterNextFunc) {
return propIterItem{}, nil
}
}
type objectAllPropIter struct {
o *Object
curStr iterNextFunc
}
func (i *objectAllPropIter) next() (propIterItem, iterNextFunc) {
item, next := i.curStr()
if next != nil {
i.curStr = next
return item, i.next
}
return i.o.self.iterateSymbols()()
}
func (o *baseObject) iterateKeys() iterNextFunc {
return (&objectAllPropIter{
o: o.val,
curStr: o.val.self.iterateStringKeys(),
}).next
}
func (o *baseObject) equal(objectImpl) bool {
// Rely on parent reference comparison
return false
}
// hopefully this gets inlined
func (o *baseObject) ensurePropOrder() {
if o.lastSortedPropLen < len(o.propNames) {
o.fixPropOrder()
}
}
// Reorder property names so that any integer properties are shifted to the beginning of the list
// in ascending order. This is to conform to https://262.ecma-international.org/#sec-ordinaryownpropertykeys.
// Personally I think this requirement is strange. I can sort of understand where they are coming from,
// this way arrays can be specified just as objects with a 'magic' length property. However, I think
// it's safe to assume most devs don't use Objects to store integer properties. Therefore, performing
// property type checks when adding (and potentially looking up) properties would be unreasonable.
// Instead, we keep insertion order and only change it when (if) the properties get enumerated.
func (o *baseObject) fixPropOrder() {
names := o.propNames
for i := o.lastSortedPropLen; i < len(names); i++ {
name := names[i]
if idx := strToArrayIdx(name); idx != math.MaxUint32 {
k := sort.Search(o.idxPropCount, func(j int) bool {
return strToArrayIdx(names[j]) >= idx
})
if k < i {
if namesMarkedForCopy(names) {
newNames := make([]unistring.String, len(names), cap(names))
copy(newNames[:k], names)
copy(newNames[k+1:i+1], names[k:i])
copy(newNames[i+1:], names[i+1:])
names = newNames
o.propNames = names
} else {
copy(names[k+1:i+1], names[k:i])
}
names[k] = name
}
o.idxPropCount++
}
}
o.lastSortedPropLen = len(names)
}
func (o *baseObject) stringKeys(all bool, keys []Value) []Value {
o.ensurePropOrder()
if all {
for _, k := range o.propNames {
keys = append(keys, stringValueFromRaw(k))
}
} else {
for _, k := range o.propNames {
prop := o.values[k]
if prop, ok := prop.(*valueProperty); ok && !prop.enumerable {
continue
}
keys = append(keys, stringValueFromRaw(k))
}
}
return keys
}
func (o *baseObject) symbols(all bool, accum []Value) []Value {
if o.symValues != nil {
iter := o.symValues.newIter()
if all {
for {
entry := iter.next()
if entry == nil {
break
}
accum = append(accum, entry.key)
}
} else {
for {
entry := iter.next()
if entry == nil {
break
}
if prop, ok := entry.value.(*valueProperty); ok {
if !prop.enumerable {
continue
}
}
accum = append(accum, entry.key)
}
}
}
return accum
}
func (o *baseObject) keys(all bool, accum []Value) []Value {
return o.symbols(all, o.val.self.stringKeys(all, accum))
}
func (o *baseObject) hasInstance(Value) bool {
panic(o.val.runtime.NewTypeError("Expecting a function in instanceof check, but got %s", o.val.toString()))
}
func toMethod(v Value) func(FunctionCall) Value {
if v == nil || IsUndefined(v) || IsNull(v) {
return nil
}
if obj, ok := v.(*Object); ok {
if call, ok := obj.self.assertCallable(); ok {
return call
}
}
panic(newTypeError("%s is not a method", v.String()))
}
func instanceOfOperator(o Value, c *Object) bool {
if instOfHandler := toMethod(c.self.getSym(SymHasInstance, c)); instOfHandler != nil {
return instOfHandler(FunctionCall{
This: c,
Arguments: []Value{o},
}).ToBoolean()
}
return c.self.hasInstance(o)
}
func (o *Object) get(p Value, receiver Value) Value {
switch p := p.(type) {
case valueInt:
return o.self.getIdx(p, receiver)
case *Symbol:
return o.self.getSym(p, receiver)
default:
return o.self.getStr(p.string(), receiver)
}
}
func (o *Object) getOwnProp(p Value) Value {
switch p := p.(type) {
case valueInt:
return o.self.getOwnPropIdx(p)
case *Symbol:
return o.self.getOwnPropSym(p)
default:
return o.self.getOwnPropStr(p.string())
}
}
func (o *Object) hasOwnProperty(p Value) bool {
switch p := p.(type) {
case valueInt:
return o.self.hasOwnPropertyIdx(p)
case *Symbol:
return o.self.hasOwnPropertySym(p)
default:
return o.self.hasOwnPropertyStr(p.string())
}
}
func (o *Object) hasProperty(p Value) bool {
switch p := p.(type) {
case valueInt:
return o.self.hasPropertyIdx(p)
case *Symbol:
return o.self.hasPropertySym(p)
default:
return o.self.hasPropertyStr(p.string())
}
}
func (o *Object) setStr(name unistring.String, val, receiver Value, throw bool) bool {
if receiver == o {
return o.self.setOwnStr(name, val, throw)
} else {
if res, ok := o.self.setForeignStr(name, val, receiver, throw); !ok {
if robj, ok := receiver.(*Object); ok {
if prop := robj.self.getOwnPropStr(name); prop != nil {
if desc, ok := prop.(*valueProperty); ok {
if desc.accessor {
o.runtime.typeErrorResult(throw, "Receiver property %s is an accessor", name)
return false
}
if !desc.writable {
o.runtime.typeErrorResult(throw, "Cannot assign to read only property '%s'", name)
return false
}
}
return robj.self.defineOwnPropertyStr(name, PropertyDescriptor{Value: val}, throw)
} else {
return robj.self.defineOwnPropertyStr(name, PropertyDescriptor{
Value: val,
Writable: FLAG_TRUE,
Configurable: FLAG_TRUE,
Enumerable: FLAG_TRUE,
}, throw)
}
} else {
o.runtime.typeErrorResult(throw, "Receiver is not an object: %v", receiver)
return false
}
} else {
return res
}
}
}
func (o *Object) set(name Value, val, receiver Value, throw bool) bool {
switch name := name.(type) {
case valueInt:
return o.setIdx(name, val, receiver, throw)
case *Symbol:
return o.setSym(name, val, receiver, throw)
default:
return o.setStr(name.string(), val, receiver, throw)
}
}
func (o *Object) setOwn(name Value, val Value, throw bool) bool {
switch name := name.(type) {
case valueInt:
return o.self.setOwnIdx(name, val, throw)
case *Symbol:
return o.self.setOwnSym(name, val, throw)
default:
return o.self.setOwnStr(name.string(), val, throw)
}
}
func (o *Object) setIdx(name valueInt, val, receiver Value, throw bool) bool {
if receiver == o {
return o.self.setOwnIdx(name, val, throw)
} else {
if res, ok := o.self.setForeignIdx(name, val, receiver, throw); !ok {
if robj, ok := receiver.(*Object); ok {
if prop := robj.self.getOwnPropIdx(name); prop != nil {
if desc, ok := prop.(*valueProperty); ok {
if desc.accessor {
o.runtime.typeErrorResult(throw, "Receiver property %s is an accessor", name)
return false
}
if !desc.writable {
o.runtime.typeErrorResult(throw, "Cannot assign to read only property '%s'", name)
return false
}
}
robj.self.defineOwnPropertyIdx(name, PropertyDescriptor{Value: val}, throw)
} else {
robj.self.defineOwnPropertyIdx(name, PropertyDescriptor{
Value: val,
Writable: FLAG_TRUE,
Configurable: FLAG_TRUE,
Enumerable: FLAG_TRUE,
}, throw)
}
} else {
o.runtime.typeErrorResult(throw, "Receiver is not an object: %v", receiver)
return false
}
} else {
return res
}
}
return true
}
func (o *Object) setSym(name *Symbol, val, receiver Value, throw bool) bool {
if receiver == o {
return o.self.setOwnSym(name, val, throw)
} else {
if res, ok := o.self.setForeignSym(name, val, receiver, throw); !ok {
if robj, ok := receiver.(*Object); ok {
if prop := robj.self.getOwnPropSym(name); prop != nil {
if desc, ok := prop.(*valueProperty); ok {
if desc.accessor {
o.runtime.typeErrorResult(throw, "Receiver property %s is an accessor", name)
return false
}
if !desc.writable {
o.runtime.typeErrorResult(throw, "Cannot assign to read only property '%s'", name)
return false
}
}
robj.self.defineOwnPropertySym(name, PropertyDescriptor{Value: val}, throw)
} else {
robj.self.defineOwnPropertySym(name, PropertyDescriptor{
Value: val,
Writable: FLAG_TRUE,
Configurable: FLAG_TRUE,
Enumerable: FLAG_TRUE,
}, throw)
}
} else {
o.runtime.typeErrorResult(throw, "Receiver is not an object: %v", receiver)
return false
}
} else {
return res
}
}
return true
}
func (o *Object) delete(n Value, throw bool) bool {
switch n := n.(type) {
case valueInt:
return o.self.deleteIdx(n, throw)
case *Symbol:
return o.self.deleteSym(n, throw)
default:
return o.self.deleteStr(n.string(), throw)
}
}
func (o *Object) defineOwnProperty(n Value, desc PropertyDescriptor, throw bool) bool {
switch n := n.(type) {
case valueInt:
return o.self.defineOwnPropertyIdx(n, desc, throw)
case *Symbol:
return o.self.defineOwnPropertySym(n, desc, throw)
default:
return o.self.defineOwnPropertyStr(n.string(), desc, throw)
}
}
func (o *Object) getWeakRefs() map[weakMap]Value {
refs := o.weakRefs
if refs == nil {
refs = make(map[weakMap]Value)
o.weakRefs = refs
}
return refs
}
func (o *Object) getId() uint64 {
id := o.id
if id == 0 {
id = o.runtime.genId()
o.id = id
}
return id
}
func (o *guardedObject) guard(props ...unistring.String) {
if o.guardedProps == nil {
o.guardedProps = make(map[unistring.String]struct{})
}
for _, p := range props {
o.guardedProps[p] = struct{}{}
}
}
func (o *guardedObject) check(p unistring.String) {
if _, exists := o.guardedProps[p]; exists {
o.val.self = &o.baseObject
}
}
func (o *guardedObject) setOwnStr(p unistring.String, v Value, throw bool) bool {
res := o.baseObject.setOwnStr(p, v, throw)
if res {
o.check(p)
}
return res
}
func (o *guardedObject) defineOwnPropertyStr(name unistring.String, desc PropertyDescriptor, throw bool) bool {
res := o.baseObject.defineOwnPropertyStr(name, desc, throw)
if res {
o.check(name)
}
return res
}
func (o *guardedObject) deleteStr(name unistring.String, throw bool) bool {
res := o.baseObject.deleteStr(name, throw)
if res {
o.check(name)
}
return res
}
func (ctx *objectExportCtx) get(key *Object) (interface{}, bool) {
if v, exists := ctx.cache[key]; exists {
if item, ok := v.(objectExportCacheItem); ok {
r, exists := item[key.self.exportType()]
return r, exists
} else {
return v, true
}
}
return nil, false
}
func (ctx *objectExportCtx) getTyped(key *Object, typ reflect.Type) (interface{}, bool) {
if v, exists := ctx.cache[key]; exists {
if item, ok := v.(objectExportCacheItem); ok {
r, exists := item[typ]
return r, exists
} else {
if reflect.TypeOf(v) == typ {
return v, true
}
}
}
return nil, false
}
func (ctx *objectExportCtx) put(key *Object, value interface{}) {
if ctx.cache == nil {
ctx.cache = make(map[*Object]interface{})
}
if item, ok := ctx.cache[key].(objectExportCacheItem); ok {
item[key.self.exportType()] = value
} else {
ctx.cache[key] = value
}
}
func (ctx *objectExportCtx) putTyped(key *Object, typ reflect.Type, value interface{}) {
if ctx.cache == nil {
ctx.cache = make(map[*Object]interface{})
}
v, exists := ctx.cache[key]
if exists {
if item, ok := ctx.cache[key].(objectExportCacheItem); ok {
item[typ] = value
} else {
m := make(objectExportCacheItem, 2)
m[key.self.exportType()] = v
m[typ] = value
ctx.cache[key] = m
}
} else {
m := make(objectExportCacheItem)
m[typ] = value
ctx.cache[key] = m
}
}
type enumPropertiesIter struct {
o *Object
wrapped iterNextFunc
}
func (i *enumPropertiesIter) next() (propIterItem, iterNextFunc) {
for i.wrapped != nil {
item, next := i.wrapped()
i.wrapped = next
if next == nil {
break
}
if item.value == nil {
item.value = i.o.get(item.name, nil)
if item.value == nil {
continue
}
} else {
if prop, ok := item.value.(*valueProperty); ok {
item.value = prop.get(i.o)
}
}
return item, i.next
}
return propIterItem{}, nil
}
func iterateEnumerableProperties(o *Object) iterNextFunc {
return (&enumPropertiesIter{
o: o,
wrapped: (&enumerableIter{
o: o,
wrapped: o.self.iterateKeys(),
}).next,
}).next
}
func iterateEnumerableStringProperties(o *Object) iterNextFunc {
return (&enumPropertiesIter{
o: o,
wrapped: (&enumerableIter{
o: o,
wrapped: o.self.iterateStringKeys(),
}).next,
}).next
}
type privateId struct {
typ *privateEnvType
name unistring.String
idx uint32
isMethod bool
}
type privateEnvType struct {
numFields, numMethods uint32
}
type privateNames map[unistring.String]*privateId
type privateEnv struct {
instanceType, staticType *privateEnvType
names privateNames
outer *privateEnv
}
type privateElements struct {
methods []Value
fields []Value
}
func (i *privateId) String() string {
return "#" + i.name.String()
}
func (i *privateId) string() unistring.String {
return privateIdString(i.name)
}